In cases of fuel failure in irradiated nuclear fuel assemblies, causing leakage of fission gasses from a fuel rod, there is a need for reliable non-destructive measurement methods that can determine which rod is failed. Methods currently in use include visual inspection, eddy current, and ultrasonic testing, but additional alternatives have been under consideration, including tomographic gamma measurements.The simulations covered in this report show that tomographic measurements could be feasible. By measuring a characteristic gamma energy from fission gasses in the gas plenum, the rod-by-rod gamma source distribution within the fuel rod plena may be reconstructed into an image or data set which could then be compared to the predicted distribution of fission gasses, e.g. from the STAV code. Rods with significantly less fission gas in the plenum may then be identified as leakers.Results for rods with low fission gas release may, however, in some cases be inconclusive since these rods will already have a weak contribution to the measured gamma-ray intensities and for such rods there is a risk that a further decrease in fission gas content due to a leak may not be detectable. In order to evaluate this and similar experimental issues, measurement campaigns are planned using a tomographic measurement system at the Halden Boiling Water Reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.