125 years after Bertha Benz completed the first overland journey in automotive history, the Mercedes Benz S-Class S 500 INTELLIGENT DRIVE followed the same route from Mannheim to Pforzheim, Germany, in fully autonomous manner. The autonomous vehicle was equipped with close-toproduction sensor hardware and relied solely on vision and radar sensors in combination with accurate digital maps to obtain a comprehensive understanding of complex traffic situations. The historic Bertha Benz Memorial Route is particularly challenging for autonomous driving. The course taken by the autonomous vehicle had a length of 103 km and covered rural roads, 23 small villages and major cities (e.g. downtown Mannheim and Heidelberg). The route posed a large variety of difficult traffic scenarios including intersections with and without traffic lights, roundabouts, and narrow passages with oncoming traffic. This paper gives an overview of the autonomous vehicle and presents details on vision and radar-based perception, digital road maps and video-based self-localization, as well as motion planning in complex urban scenarios.
Abstract-Future vehicle systems for active pedestrian safety will not only require a high recognition performance but also an accurate analysis of the developing traffic situation. In this paper, we present a study on pedestrian path prediction and action classification at short subsecond time intervals. We consider four representative approaches: two novel approaches (based on Gaussian process dynamical models and probabilistic hierarchical trajectory matching) that use augmented features derived from dense optical flow and two approaches as baseline that use positional information only (a Kalman filter and its extension to interacting multiple models). In experiments using stereo vision data obtained from a vehicle, we investigate the accuracy of path prediction and action classification at various time horizons, the effect of various errors (image localization, vehicle egomotion estimation), and the benefit of the proposed approaches. The scenario of interest is that of a crossing pedestrian, who might stop or continue walking at the road curbside. Results indicate similar performance of the four approaches on walking motion, with near-linear dynamics. During stopping, however, the two newly proposed approaches, with nonlinear and/or higher order models and augmented motion features, achieve a more accurate position prediction of 10-50 cm at a time horizon of 0-0.77 s around the stopping event.
Abstract-Active safety systems hold great potential to reduce the accident frequency and severity, by warning the driver and/or exerting automatic vehicle control ahead of crashes. This paper presents a novel active pedestrian safety system, which combines sensing, situation analysis, decision making and vehicle control. The sensing component is based on stereo vision; it fuses two complementary approaches for added robustness: motion-based object detection and pedestrian recognition. The highlight of the system is the ability to decide within a split second whether to perform automatic braking or evasive steering, and to execute this maneuver reliably, at relatively high vehicle speeds (up to 50 km/h).We performed extensive pre-crash experiments with the system on the test track (22 scenarios with real pedestrians and a dummy). We obtained a significant benefit in detection performance and improved lateral velocity estimation by the fusion of motion-based object detection and pedestrian recognition. On a fully reproducible scenario subset, involving the dummy entering laterally into the vehicle path from behind an occlusion, the system executed in over 40 trials the intended vehicle action: automatic braking (if a full stop is still possible) or else, automatic evasive steering.
In August 2013, the modified Mercedes-Benz SClass S500 INTELLIGENT DRIVE ("BERTHA") completed the historic Bertha-Benz-Memorial-Route fully autonomously. The self-driving 103 km journey passed through urban and rural areas. The system used detailed geometric maps to supplement its online perception systems. A map based approach is only feasible if a precise, map relative localization is provided. The purpose of this paper is to give a survey on this corner stone of the system architecture. Two supplementary vision based localization methods have been developed. One of them is based on the detection of lane markings and similar road elements, the other exploits descriptors for point shaped features. A final filter step combines both estimates while handling out-of-sequence measurements correctly.
Abstract-This paper presents a novel pedestrian detection system for intelligent vehicles. We propose the use of dense stereo for both the generation of regions of interest and pedestrian classification. Dense stereo allows the dynamic estimation of camera parameters and the road profile, which, in turn, provides strong scene constraints on possible pedestrian locations. For classification, we extract spatial features (gradient orientation histograms) directly from dense depth and intensity images. Both modalities are represented in terms of individual feature spaces, in which discriminative classifiers (linear support vector machines) are learned. We refrain from the construction of a joint feature space but instead employ a fusion of depth and intensity on the classifier level. Our experiments involve challenging image data captured in complex urban environments (i.e., undulating roads and speed bumps). Our results show a performance improvement by up to a factor of 7.5 at the classification level and up to a factor of 5 at the tracking level (reduction in false alarms at constant detection rates) over a system with static scene constraints and intensity-only classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.