Maize is both an exciting model organism in plant genetics and also the most important crop worldwide for food, animal feed and bioenergy production. Recent genome-wide association and metabolic profiling studies aimed to resolve quantitative traits to their causal genetic loci and key metabolic regulators. Here we present a complementary approach that exploits large-scale genomic and metabolic information to predict complex, highly polygenic traits in hybrid testcrosses. We crossed 285 diverse Dent inbred lines from worldwide sources with two testers and predicted their combining abilities for seven biomass- and bioenergy-related traits using 56,110 SNPs and 130 metabolites. Whole-genome and metabolic prediction models were built by fitting effects for all SNPs or metabolites. Prediction accuracies ranged from 0.72 to 0.81 for SNPs and from 0.60 to 0.80 for metabolites, allowing a reliable screening of large collections of diverse inbred lines for their potential to create superior hybrids.
The diversity of metabolites found in plants is by far greater than in most other organisms. Metabolic profiling techniques, which measure many of these compounds simultaneously, enabled investigating the regulation of metabolic networks and proved to be useful for predicting important agronomic traits. However, little is known about the genetic basis of metabolites in crops such as maize. Here, a set of 289 diverse maize inbred lines was genotyped with 56,110 SNPs and assayed for 118 biochemical compounds in the leaves of young plants, as well as for agronomic traits of mature plants in field trials. Metabolite concentrations had on average a repeatability of 0.73 and showed a correlation pattern that largely reflected their functional grouping. Genome-wide association mapping with correction for population structure and cryptic relatedness identified for 26 distinct metabolites strong associations with SNPs, explaining up to 32.0% of the observed genetic variance. On nine chromosomes, we detected 15 distinct SNP-metabolite associations, each of which explained more then 15% of the genetic variance. For lignin precursors, including p-coumaric acid and caffeic acid, we found strong associations (P values 2:7 × 10 −10 to 3:9 × 10 −18 ) with a region on chromosome 9 harboring cinnamoyl-CoA reductase, a key enzyme in monolignol synthesis and a target for improving the quality of lignocellulosic biomass by genetic engineering approaches. Moreover, lignin precursors correlated significantly with lignin content, plant height, and dry matter yield, suggesting that metabolites represent promising connecting links for narrowing the genotypephenotype gap of complex agronomic traits.genetic association | metabolomics | Zea mays
Chilling sensitivity of maize is a strong limitation for its cultivation in the cooler areas of the northern and southern hemisphere because reduced growth in early stages impairs on later biomass accumulation. Efficient breeding for chilling tolerance is hampered by both the complex physiological response of maize to chilling temperatures and the difficulty to accurately measure chilling tolerance in the field under fluctuating climatic conditions. For this research, we used genome-wide association (GWA) mapping to identify genes underlying chilling tolerance under both controlled and field conditions in a broad germplasm collection of 375 maize inbred lines genotyped with 56 110 single nucleotide polymorphism (SNP). We identified 19 highly significant association signals explaining between 5.7 and 52.5% of the phenotypic variance observed for early growth and chlorophyll fluorescence parameters. The allelic effect of several SNPs identified for early growth was associated with temperature and incident radiation. Candidate genes involved in ethylene signalling, brassinolide, and lignin biosynthesis were found in their vicinity. The frequent involvement of candidate genes into signalling or gene expression regulation underlines the complex response of photosynthetic performance and early growth to climatic conditions, and supports pleiotropism as a major cause of co-locations of quantitative trait loci for these highly polygenic traits.
BackgroundPlant growth is a good indicator of crop performance and can be measured by different methods and on different spatial and temporal scales. In this study, we measured the canopy height growth of maize (Zea mays), soybean (Glycine max) and wheat (Triticum aestivum) under field conditions by terrestrial laser scanning (TLS). We tested the hypotheses whether such measurements are capable to elucidate (1) differences in architecture that exist between genotypes; (2) genotypic differences between canopy height growth during the season and (3) short-term growth fluctuations (within 24 h), which could e.g. indicate responses to rapidly fluctuating environmental conditions. The canopies were scanned with a commercially available 3D laser scanner and canopy height growth over time was analyzed with a novel and simple approach using spherical targets with fixed positions during the whole season. This way, a high precision of the measurement was obtained allowing for comparison of canopy parameters (e.g. canopy height growth) at subsequent time points.ResultsThree filtering approaches for canopy height calculation from TLS were evaluated and the most suitable approach was used for the subsequent analyses. For wheat, high coefficients of determination (R2) of the linear regression between manually measured and TLS-derived canopy height were achieved. The temporal resolution that can be achieved with our approach depends on the scanned crop. For maize, a temporal resolution of several hours can be achieved, whereas soybean is ideally scanned only once per day, after leaves have reached their most horizontal orientation. Additionally, we could show for maize that plant architectural traits are potentially detectable with our method.ConclusionsThe TLS approach presented here allows for measuring canopy height growth of different crops under field conditions with a high temporal resolution, depending on crop species. This method will enable advances in automated phenotyping for breeding and precision agriculture applications. In future studies, the TLS method can be readily applied to detect the effects of plant stresses such as drought, limited nutrient availability or compacted soil on different genotypes or on spatial variance in fields.
Having a strong effect on plant growth, temperature adaption has become a major breeding aim. Due to a lack of efficient methods, we developed an image-based approach to characterise genotypes for their temperature behaviour in the field. Twenty-nine winter wheat (Triticum aestivum L.) genotypes were continuously monitored at 3-day intervals on a plot basis during early growth from November to March using a modified digital camera. Canopy cover (CC) was determined by segmentation of leaves in calibrated images. Relative growth rates (RGR) of CC were then calculated for each measurement interval and related to the respective temperature. Also, classical traits used in plant breeding were assessed. Measurements of CC at single dates were highly repeatable with respect to genotype. For the tested range of temperatures (0−7°C), a linear relation between RGR and temperature was observed. Genotypes differed for base temperature and increase in RGR with rising temperature, these two traits showing a strong positive correlation with each other but being independent of CC at a single date. Our simple approach is suitable to screen large populations for differences in growth response to environmental stimuli. Furthermore, the derived parameters reveal additional information that cannot be assessed by usual measurements of static size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.