Gastrointestinal nematodes are one of the main health issues in sheep breeding. To identify loci affecting the resistance to Haemonchus contortus, a genome scan was carried out using 1,275 Romane × Martinik Black Belly backcross lambs. The entire population was challenged with Haemonchus contortus in 2 consecutive experimental infections, and fecal egg counts (FEC) and packed cell volumes were measured. A subgroup of 332 lambs with extreme FEC was necropsied to determine the total worm burden, length of female worms, sex ratio in the worm population, abomasal pH, and serum and mucosal G immunoglobulins (IgG) responses. Pepsinogen concentration was measured in another subset of 229 lambs. For QTL detection, 160 microsatellite markers were used as well as the Illumina OvineSNP50 BeadChip that provided 42,469 SNP markers after quality control. Linkage, association, and joint linkage and association analyses were performed with the QTLMAP software. Linkage disequilibrium (LD) was estimated within each pure breed, and association analyses were carried out either considering or not the breed origin of the haplotypes. Four QTL regions on sheep chromosomes (OAR)5, 12, 13, and 21 were identified as key players among many other QTL with small to moderate effects. A QTL on OAR21 affecting pepsinogen concentration exactly matched the pepsinogen (PGA5) locus. A 10-Mbp region affecting FEC after the 1st and 2nd infections was found on OAR12. The SNP markers outperformed microsatellites in the linkage analysis. Taking advantage of the LD helped to refine the locations of the QTL mapped on OAR5 and 13.
The aim of this work was to estimate whether genetic dissection of QTL on chromosomes 1, 2, 4, and 7, detected in an F2 Meishan x Large White population, can be achieved with a recombinant back-cross progeny test approach. For this purpose, a first generation of backcross (BC1) was produced by using frozen semen of F1 Large White x Meishan boars with Large White females. Four BC1 boars were selected because of their heterozygosity for at least 1 of the 4 regions. The BC1 boars were crossed with Large White sows, and the resulting BC2 offspring were measured for several growth and body composition traits. Contrary to the F2 animals, BC2 animals were also measured for meat quality traits in adductor, gluteus superficialis (GS), longissimus dorsi, and biceps femoris (BF) muscles. Each BC1 boar was tested for a total of 39 traits and for the 4 regions with statistical interval mapping analyses. The QTL effects obtained in BC1 families showed some differences compared with those described in F1 families. However, we confirmed QTL effects for growth in the SW1301-SW2512 markers interval on chromosome 1 and also for body composition in the SW1828-SW2512 markers interval on chromosome 1, in the SW2443-SWR783 markers interval on chromosome 2, and in the SW1369-SW632 markers interval on chromosome 7. In addition, we detected new QTL for growth traits on chromosome 2 and for meat quality traits on chromosomes 1 and 2. Growth of animals from weaning to the end of the test was influenced by the IGF2 gene region on chromosome 2. Concerning meat quality, ultimate pH of adductor, longissimus dorsi, and BF were affected by the interval delimited by UMNP3000 and SW2512 markers on chromosome 1, and a* of GS, L* of BF, and water-holding capacity of GS were affected by QTL located between marker loci SW2443 and SWR783 on chromosome 2. Recombinant progeny testing appeared to be a suitable strategy for the genetic dissection of the QTL investigated.
Genetic trends for growth, feed efficiency, composition, and morphometry of carcasses were estimated in a French Large White (LW) pig population using frozen semen. Two groups of pigs were produced by inseminating LW sows with either stored, frozen semen from 17 LW boars born in 1977 or with semen from 23 LW boars born in 1998. In each group, 15 males and 90 females were randomly chosen and mated to produce approximately 1,000 pigs/group. These pigs were performance tested with individual ADFI and serial BW and backfat thickness measurements, slaughtered at 105 kg of BW, and measured for carcass traits. The data were analyzed using mixed linear animal models, including the fixed effect of the experimental group (offspring of 1977 or 1998 boars), the random effect of the additive genetic value of each animal, and, when significant, the fixed effects of sex, fattening batch, and slaughterhouse, the linear regression on BW, and the random effect of the common environment of birth litter. For each trait, the genetic trend was estimated as twice the difference between the 2 experimental groups. Results showed moderately favorable trends for on-test ADG (3.7 +/- 1.3 g/d per year) and feed conversion ratio (-0.014 +/- 0.005 kg/kg per year) in spite of a tendency toward an increase in ADFI (7.6 +/- 4.7 g/yr). A strong reduction in carcass fatness (-0.35 +/- 0.07 mm/yr for carcass average backfat thickness) and a large improvement in carcass leanness (0.31 +/- 0.10 mm(2)/yr and 0.41 +/- 0.08%/yr for loin eye area and carcass muscle content, respectively) were observed. Carcass shape measurements (back and leg length, back width, muscle thickness of hind limbs) were not affected by selection. Serial measurements of BW and backfat thickness showed that the major part of the genetic gains occurred during late growth and that the reduction in the backfat layer was more pronounced in the rear than in the front part of the carcass. The use of frozen semen appears to be a powerful practice to thoroughly investigate changes attributable to selection.
Correlated effects of selection for components of litter size on carcass and meat quality traits were estimated using data from 3 lines of pigs derived from the same Large White base population. Two lines were selected for 6 generations on high ovulation rate at puberty (OR) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS). The third line was an unselected control (CON). The 3 lines were kept for a 7th generation, but without any selection. Carcass and meat quality traits were recorded on the 5th to 7th generation of the experiment. Carcass traits included dressing percentage, carcass length (LGTH), average backfat thickness (ABT), estimated lean meat content, and 8 carcass joint weight traits. Meat quality traits included pH recorded 24 h after slaughter (pH24) of LM, gluteus superficialis (GS), biceps femoris (BF), and adductor femoris (AD) muscles, as well as reflectance and water-holding capacity (WHC) of GS and BF muscles. Heritabilities of carcass and meat quality traits and their genetic correlations with OR and PS were estimated using REML methodology applied to a multiple trait animal model. Correlated responses to selection were then estimated by computing differences between OR or PS and CON lines at generations 5 to 7 using least squares and mixed model methodology. Heritability (h(2)) estimates were 0.08 +/- 0.04, 0.58 +/- 0.10, 0.70 +/- 0.10, and 0.74 +/- 0.10 for dressing percentage, LGTH, ABT, and lean meat content, respectively, ranged from 0.28 to 0.72 for carcass joint traits, from 0.28 to 0.45 for pH24 and reflectance measurements, and from 0.03 to 0.11 for WHC measurements. Both OR and PS had weak genetic correlations with carcass (r(G) = -0.09 to 0.17) and most meat quality traits. Selection for OR did not affect any carcass composition or meat quality trait. Correlated responses to selection for PS were also limited, with the exception of a decrease in pH24 of GS and BF muscles (-0.12 to -0.14 after 6 generations; P < 0.05), in WHC of GS muscle (-18.9 s after 6 generations; P < 0.05) and a tendency toward an increase in loin weight (0.44 kg after 6 generations; P < 0.10) .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.