Field trials were established at three European sites (Denmark, Eastern France, South-West France) of genetically modified maize (Zea mays L.) expressing the CryIAb Bacillus thuringiensis toxin (Bt), the nearisogenic non-Bt cultivar, another conventional maize cultivar and grass. Soil from Denmark was sampled at sowing (May) and harvest (October) over two years (2002, 2003); from E France at harvest 2002, sowing and harvest 2003; and from SW France at sowing and harvest 2003. Samples were analysed for microbial community structure (2003 samples only) by community-level physiological-profiling (CLPP) and phospholipid fatty acid analysis (PLFA), and protozoa and nematodes in all samples. Individual differences within a site resulted from: greater nematode numbers under grass than maize on three occasions; different nematode populations under the conventional maize cultivars once; and two occasions when there was a reduced protozoan population under Bt maize compared to non-Bt maize. Microbial community structure within the sites only varied with grass compared to maize, with one occurrence of CLPP varying between maize cultivars (Bt versus a conventional cultivar). An overall comparison of Bt versus non-Bt maize across all three sites only revealed differences for nematodes, with a smaller population under the Bt maize. Nematode community structure was different at each site and the Bt effect was not confined to specific nematode taxa. The effect of the Bt maize was small and within the normal variation expected in these agricultural systems.
In 2003, the European Commission established the principle of coexistence which refers to "the ability of farmers to make a practical choice between conventional, organic and GM-crop production, in compliance with the legal obligations for labelling and/or purity standards" and laid down guidelines defining the context of this coexistence 1 . In order to determine what is needed for the sustainable introduction of GM crops in Europe, the cross-disciplinary SIGMEA Research Project was set up to create a science-based framework to inform decision-makers. SIGMEA has (i) collated and analysed European data on gene flow and the environmental impacts of the major crop species which are likely to be transgenic in the future (maize, rapeseed, sugar beet, rice, and wheat), (ii) designed predictive models of gene flow at the landscape level, (iii) analysed the technical feasibility and economic impacts of coexistence in the principal farming regions of Europe, (iv) developed novel GMO detection methods, (v) addressed legal issues related to coexistence, and (vi) proposed public and farm scale decisionmaking tools, as well as guidelines regarding management and governance. This publishable version of the final activity report of the FP6 SIGMEA research project, covers the fourteen major issues under investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.