Synthetic Mimics of Antimicrobial Peptides (SMAMPs) imitate natural host-defense peptides, a vital component of the body’s immune system. This work presents a molecular construction kit that allows the easy and versatile synthesis of a broad variety of facially amphiphilic oxanorbornene-derived monomers. Their ring-opening metathesis polymerization (ROMP) and deprotection provide several series of SMAMPs. Using amphiphilicity, monomer feed ratio, and molecular weight as parameters, polymers with 533 times higher selectivitiy (selecitviy = hemolytic concentration/minimum inhibitory concentration) for bacteria over mammalian cells were discovered. Some of these polymers were 50 times more selective for Gram-positive over Gram-negative bacteria while other polymers surprisingly showed the opposite preference. This kind of “double selectivity” (bacteria over mammalian and one bacterial type over another) is unprecedented in other polymer systems and is attributed to the monomer’s facial amphiphilicity.
Polyguanidinium oxanorbornene (PGON) was synthesized from norbornene monomers via ring-opening metathesis polymerization. This polymer was observed to be strongly antibacterial against Gram-negative and Gram-positive bacteria as well as nonhemolytic against human red blood cells. Time-kill studies indicated that this polymer is lethal and not just bacteriostatic. In sharp contrast to previously reported SMAMPs (synthetic mimics of antimicrobial peptides), PGON did not disrupt membranes in vesicle-dye leakage assays and microscopy experiments. The unique biological properties of PGON, in same ways similar to cell-penetrating peptides, strongly encourage the examination of other novel guanidino containing macromolecules as powerful and selective antimicrobial agents.
In this study, amphiphilic polyoxanorbornene with different quaternary alkyl pyridinium side chains were synthesized. The biological efficiencies of these polymers, with various alkyl substituents, were determined by bacterial growth inhibition assays and hemolytic activity (HC 50 ) against human red blood cells (RBCs) to provide selectivity of these polymers for bacterial over mammalian cells. A series of polymers with different alkyl substituents (ethyl, butyl, hexyl, octyl, decyl and phenylethyl) and two different molecular weights (3 and 10 kDa) were prepared. The impact of alkyl chain length divided the biological activity into two different cases: those with an alkyl substituent containing four or fewer carbons had a minimum inhibitory concentration (MIC) of 200 mg Á mL À1 and a HC 50 greater than 1 650 mg Á mL À1 , while those with six or more carbons had lower MICs 12.5 mg Á mL À1 and HC 50 250 mg Á mL À1 . Using MSI-78, the potent Magainin derivative which has an MIC ¼ 12.0 mg Á mL À1 and HC 50 ¼ 120 mg Á mL À1 , as a comparison, the polymers with alkyl substituents C 4 (four carbons) were not very potent, but did show selectivity values greater than or equal to MSI-78. In contrast, those with alkyl substituents !C 6 were as potent, or more potent, than MSI-78 and in three specific cases demonstrated selectivity values similar to, or better than, MSI-78. To understand if these polymers were membrane active, polymer induced lipid membrane disruption activities were evaluated by dye leakage experiments. Lipid composition and polymer hydrophobicity were found to be important factors for dye release.
The current study is aimed at investigating the effect of fine-tuning the cationic character of synthetic mimics of antimicrobial peptides (SMAMPs) on the hemolytic and antibacterial activities. A series of novel norbornene monomers that carry one, two, or three Boc-protected amine functionalities was prepared. Ring-opening metathesis polymerization (ROMP) of the monomers, followed by deprotection of the amine groups resulted in cationic antimicrobial polynorbornenes that carry one, two, and three charges per monomer repeat unit. Increasing the number of amine groups on the most hydrophobic polymer reduced its hemolytic activity significantly. To understand the membrane activity of these polymers, we conducted dye leakage experiments on lipid vesicles that mimic bacteria and red blood cell membranes, and these results showed a strong correlation with the hemolysis data.
A direct comparison of two strategies for designing antimicrobial polymers is presented. Previously, we published several reports on the use of facially amphiphilic (FA) monomers which led to polynorbornenes with excellent antimicrobial activities and selectivities. Our polymers obtained by copolymerization of structurally similar segregated monomers, in which cationic and non-polar moieties reside on separate repeat units, led to polymers with less pronounced activities. A wide range of polymer amphiphilicities was surveyed by pairing a cationic oxanor-bornene with eleven different non-polar monomers and varying the comonomer feed ratios. Their properties were tested using antimicrobial assays and copolymers possessing intermediate hydrophobicities were the most active. Polymer-induced leakage of dye-filled liposomes and microscopy of polymer-treated bacteria support a membrane-based mode of action. From these results there appears to be profound differences in how a polymer made from FA monomers interacts with the phospholipid bilayer compared with copolymers from segregated monomers. We conclude that a well-defined spatial relationship of the whole polymer is crucial to obtain synthetic mimics of antimicrobial peptides (SMAMPs): charged and non-polar moieties need to be balanced locally, for example, at the monomer level, and not just globally. We advocate the use of FA monomers for better control of biological properties. It is expected that this principle will be usefully applied to other backbones such as the polyacrylates, polystyrenes, and non-natural polyamides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.