Complementary cyclisation reactions of hex-2-ene-1,6-diamine derivatives were exploited in the synthesis of alternative molecular scaffolds. The value of the synthetic approach was analysed using LLAMA, an open-access computational tool for assessing the lead-likeness and novelty of molecular scaffolds.
Soluble additives are widely used to control crystallization, leading to definition of properties including size, morphology, polymorph and composition. However, due to the number of potential variables in these experiments, it is typically extremely difficult to identify reaction conditions -as defined by solution compositions, temperatures and combinations of additives -that give the desired product. This article introduces a high throughput methodology which addresses this challenge and enables the streamlined preparation and characterization of crystalline materials. Using calcium carbonate precipitated in the presence of selected amino acids as a model system, we use well plates as micro volume crystallizers, and an accurate liquid handling pipetting workstation for sample preparation. Following changes in the solution turbidity using a plate reader delivers information about the reaction kinetics, while semi automated scanning electron microscopy, powder XRD and Raman microscopy provide structural information about the library of crystalline products. Of particular interest for the CaCO3 system is the development of fluorescence based protocols which rapidly evaluate the amounts of the additives occluded within the crystals. Together, these methods provide a strategy for efficiently screening a broad reaction space, where this can both accelerate the ability to generate crystalline materials with target properties, and develop our understanding of additive directed crystallization.
The syntheses of configurationally restricted mono- and bis-macrocyclic copper(II) perchlorate complexes (copper(II) 5-benzyl-1,5,8,12-tetraazabicyclo[10.2.2]hexadecane and dicopper(II) 5,5'-[1,4-phenylenebis(methylene)]-bis(1,5,8,12-tetraazabicyclo[10.2.2]hexadecane)) are reported and the X-ray structure of the copper(II) mono-macrocyclic complex has been determined. EXAFS studies on the bis-macrocyclic species in aqueous solution show that the copper coordination spheres are essentially identical to the solid state structure, and do not vary in the presence of 20 equivalents of sodium acetate per metal centre. DFT calculations were carried out at the BP86/TZP level to determine the nature of potential binding interactions with CXCR4 aspartate residues. The alkylated single macrocyclic compound was modelled with an acetate included to represent the aspartate residue, demonstrating that the predicted macrocycle configuration has the lowest energy and the acetate interaction is effectively monodentate giving a distorted trigonal bipyramidal geometry at the copper centre. In vitro anti-HIV infection assays show that the configurationally restricted dicopper(II) complex is more active (average EC(50) = 0.026 microM against HIV-1) than the non-constrained dicopper(II) 1,1'-[1,4-phenylenebis(methylene)]-bis(1,4,8,11-tetraazacyclotetradecane) (average EC(50) = 0.047 microM against HIV-1) although it is an order of magnitude less active than the configurationally restricted dizinc(II) complex.
On entering the Earth’s atmosphere, micrometeoroids partially or completely ablate, leaving behind layers of metallic atoms and ions. The relative concentration of the various metal layers is not well explained by current models of ablation. Furthermore, estimates of the total flux of cosmic dust and meteoroids entering the Earth’s atmosphere vary over two orders of magnitude. To better constrain these estimates and to better model the metal layers in the mesosphere, an experimental Meteoric Ablation Simulator (MASI) has been developed. Interplanetary Dust Particle (IDP) analogs are subjected to temperature profiles simulating realistic entry heating, to ascertain the differential ablation of relevant metal species. MASI is the first ablation experiment capable of simulating detailed mass, velocity, and entry angle-specific temperature profiles whilst simultaneously tracking the resulting gas-phase ablation products in a time resolved manner. This enables the determination of elemental atmospheric entry yields which consider the mass and size distribution of IDPs. The instrument has also enabled the first direct measurements of differential ablation in a laboratory setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.