Our understanding of translation underpins our capacity to engineer living systems. The canonical start codon (AUG) and a few near-cognates (GUG, UUG) are considered as the ‘start codons’ for translation initiation in Escherichia coli. Translation is typically not thought to initiate from the 61 remaining codons. Here, we quantified translation initiation of green fluorescent protein and nanoluciferase in E. coli from all 64 triplet codons and across a range of DNA copy number. We detected initiation of protein synthesis above measurement background for 47 codons. Translation from non-canonical start codons ranged from 0.007 to 3% relative to translation from AUG. Translation from 17 non-AUG codons exceeded the highest reported rates of non-cognate codon recognition. Translation initiation from non-canonical start codons may contribute to the synthesis of peptides in both natural and synthetic biological systems.
Combinatorial chemical evolution is used to select oil-water droplet interfaces that drive inorganic nanoparticle synthesis.
The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in waterin-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature. directed evolution | in vitro compartmentalization | DNA shuffling | metal oxide nanoparticles | self-assembly
DNA-based information systems drive the combinatorial optimization processes of natural evolution, including the evolution of biominerals. Advances in high-throughput DNA sequencing expand the power of DNA as a potential information platform for combinatorial engineering, but many applications remain to be developed due in part to the challenge of handling large amounts of sequence data. Here we employ high-throughput sequencing and a recently developed clustering method (AutoSOME) to identify single-stranded DNA sequence families that bind specifically to ZnO semiconductor mineral surfaces. These sequences were enriched from a diverse DNA library after a single round of screening, whereas previous screening approaches typically require 5-15 rounds of enrichment for effective sequence identification. The consensus sequence of the largest cluster was poly d(T)30. This consensus sequence exhibited clear aptamer behavior and was shown to promote the synthesis of crystalline ZnO from aqueous solution at near-neutral pH. This activity is significant, as the crystalline form of this wide-bandgap semiconductor is not typically amenable to solution synthesis in this pH range. High-resolution TEM revealed that this DNA synthesis route yields ZnO nanoparticles with an amorphous-crystalline core-shell structure, suggesting that the mechanism of mineralization involves nanoscale coacervation around the DNA template. We thus demonstrate that our new method, termed Single round Enrichment of Ligands by deep Sequencing (SEL-Seq), can facilitate biomimetic synthesis of technological nanomaterials by accelerating combinatorial selection of biomolecular-mineral interactions. Moreover, by enabling direct characterization of sequence family demographics, we anticipate that SEL-Seq will enhance aptamer discovery in applications employing additional rounds of screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.