Droplets splash when they impact dry, flat substrates above a critical velocity that depends on parameters such as droplet size, viscosity, and air pressure. By imaging ethanol drops impacting silicone gels of different stiffnesses, we show that substrate stiffness also affects the splashing threshold. Splashing is reduced or even eliminated: droplets on the softest substrates need over 70% more kinetic energy to splash than they do on rigid substrates. We show that this is due to energy losses caused by deformations of soft substrates during the first few microseconds of impact. We find that solids with Young's moduli ≲100 kPa reduce splashing, in agreement with simple scaling arguments. Thus, materials like soft gels and elastomers can be used as simple coatings for effective splash prevention. Soft substrates also serve as a useful system for testing splash-formation theories and sheet-ejection mechanisms, as they allow the characteristics of ejection sheets to be controlled independently of the bulk impact dynamics of droplets.
Many environmental flows arise due to natural convection at a vertical surface, from flows in buildings to dissolving ice faces at marine-terminating glaciers. We use three-dimensional direct numerical simulations of a vertical channel with differentially heated walls to investigate such convective, turbulent boundary layers. Through the implementation of a multiple-resolution technique, we are able to perform simulations at a wide range of Prandtl numbers ${Pr}$ . This allows us to distinguish the parameter dependences of the horizontal heat flux and the boundary layer widths in terms of the Rayleigh number $\mbox {{Ra}}$ and Prandtl number ${Pr}$ . For the considered parameter range $1\leq {Pr} \leq 100$ , $10^{6} \leq \mbox {{Ra}} \leq 10^{9}$ , we find the flow to be consistent with a ‘buoyancy-controlled’ regime where the heat flux is independent of the wall separation. For given ${Pr}$ , the heat flux is found to scale linearly with the friction velocity $V_\ast$ . Finally, we discuss the implications of our results for the parameterisation of heat and salt fluxes at vertical ice–ocean interfaces.
We numerically study the melting process of a solid layer heated from below such that a liquid melt layer develops underneath. The objective is to quantitatively describe and understand the emerging topography of the structures (characterized by the amplitude and wavelength), which evolve out of an initially smooth surface. By performing both two-dimensional (achieving Rayleigh number up to $Ra=10^{11}$ ) and three-dimensional (achieving Rayleigh number up to $Ra=10^9$ ) direct numerical simulations with an advanced finite difference solver coupled to the phase-field method, we show how the interface roughness is spontaneously generated by thermal convection. With increasing height of the melt the convective flow intensifies and eventually even becomes turbulent. As a consequence, the interface becomes rougher but is still coupled to the flow topology. The emerging structure of the interface coincides with the regions of rising hot plumes and descending cold plumes. We find that the roughness amplitude scales with the mean height of the liquid layer. We derive this scaling relation from the Stefan boundary condition and relate it to the non-uniform distribution of heat flux at the interface. For two-dimensional cases, we further quantify the horizontal length scale of the morphology, based on the theoretical upper and lower bounds given for the size of convective cells known from Wang et al. (Phys. Rev. Lett., vol. 125, 2020, 074501). These bounds agree with our simulation results. Our findings highlight the key connection between the morphology of the melting solid and the convective flow structures in the melt beneath.
We use two-dimensional direct numerical simulations of Boussinesq stratified shear layers to investigate the influence of the minimum gradient Richardson number $Ri_{m}$ on the early time evolution of Kelvin–Helmholtz instability to its saturated ‘billow’ state. Even when the diffusion of the background velocity and density distributions is counterbalanced by artificial body forces to maintain the initial profiles, in the limit as $Ri_{m}\rightarrow 1/4$, the perturbation growth rate tends to zero and the saturated perturbation energy becomes small. These results imply, at least for such canonical inflectional stratified shear flows, that ‘marginally unstable’ flows with $Ri_{m}$ only slightly less than 1/4 are highly unlikely to become ‘turbulent’, in the specific sense of being associated with significantly enhanced dissipation, irreversible mixing and non-trivial modification of the background distributions without additional externally imposed forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.