Multispecies biofilms modeling interproximal plaque were grown on a hydroxyapatite substratum in a constant-depth film fermentor and then immersed in a viewing solution containing fluorescent indicators of membrane integrity. Confocal laser scanning microscopy (CLSM) revealed the structure and spatial distribution of cell vitality within the biofilms. Chlorhexidine gluconate (CHX) was added to the viewing solution to achieve concentrations of 0.05 and 0.2% (wt/vol) before further CLSM time-lapse series were captured. Image analysis showed that exposure to 0.2% CHX caused the biofilm to contract at a rate of 1.176 m min ؊1 along the z axis and also effected changes in total fluorescence measurements and viability profiles through the biofilms after a delay of 3 to 5 min. At a concentration of 0.05% CHX, total fluorescence measurements for the biofilm exhibited barely detectable changes after 5 min. Fluorescence profiles (fluorescence versus time versus depth), however, clearly showed that a time-dependent effect was present, but the clearest indicator of the effect of dilute CHX over time was viability profiling. These findings suggest the possibility of using fluorescent indicators of membrane integrity in conjunction with viability profiling to evaluate the penetration of the bactericidal effects of membrane-active antimicrobial compounds into biofilm.
Substantial numbers of oral bacteria in multi-species biofilms can be killed by light in the presence of TBO. This may be useful in the treatment of dental plaque-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.