Cover PhotoMontane ecosystems, as seen from Mount Jefferson on the White Mountain National Forest. These ecosystems are particularly vulnerable to climate change. Photo by Toni Lyn Morelli, U.S. Geological Survey.
Soils are Earth's largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from two national-level databases with remote sensing information to address the impacts of reforestation on the sequestration of C in topsoils (uppermost mineral soil horizons). We quantify C stocks in cultivated, reforesting, and natural forest topsoils; rates of C accumulation in reforesting topsoils; and their contribution to the US forest C sink. Our results indicate that reforestation increases topsoil C storage, and that reforesting lands, currently occupying >500,000 km in the United States, will sequester a cumulative 1.3-2.1 Pg C within a century (13-21 Tg C·y). Annually, these C gains constitute 10% of the US forest sector C sink and offset 1% of all US greenhouse gas emissions.
The importance of forests for sequestering carbon has created widespread interest among land managers for identifying actions that maintain or enhance carbon storage in forests. Managing for forest carbon under changing climatic conditions underscores a need for resources that help identify adaptation actions that align with carbon management. We developed the Forest Carbon Management Menu to help translate broad carbon management concepts into actionable tactics that help managers reduce risk from expected climate impacts in order to meet desired management goals. We describe examples of real-world forest-management planning projects that integrate climate change information with this resource to identify actions that simultaneously benefit forest carbon along with other project goals. These examples highlight that the inclusion of information on climate vulnerability, considering the implications of management actions over extended timescales, and identifying co-benefits for other management goals can reveal important synergies in managing for carbon and climate adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.