Analyses of human reliability during manned spaceflight are crucial because human error can easily arise in the extreme environment of space and may pose a great potential risk to the mission. Although various approaches exist for human reliability analysis (HRA), all these approaches are based on human behavior on the ground. Thus, to appropriately analyze human reliability during spaceflight, this paper proposes a space-based HRA method of quantifying the human error probability (HEP) for space missions. Instead of ground-based performance shaping factors (PSFs), this study addresses PSFs specific to the space environment, and a corresponding evaluation system is integrated into the proposed approach to fully consider space mission characteristics. A Bayesian network is constructed based on the cognitive reliability and error analysis method (CREAM) to model these space-based PSFs and their dependencies. By incorporating the Bayesian network, the proposed approach transforms the HEP estimation procedure into a probabilistic calculation, thereby overcoming the shortcomings of traditional HRA methods in addressing the uncertainty of the complex space environment. More importantly, by acquiring more information, the HEP estimates can be dynamically updated by means of this probabilistic calculation. By studying 2 examples and evaluating the HEPs for an International Space Station ingress procedure, the feasibility and superiority of the developed approach are validated both mathematically and in a practical scenario.
It is crucial to implement an effective and accurate fault diagnosis of a gearbox for mechanical systems. However, being composed of many mechanical parts, a gearbox has a variety of failure modes resulting in the difficulty of accurate fault diagnosis. Moreover, it is easy to obtain raw vibration signals from real gearbox applications, but it requires significant costs to label them, especially for multi-fault modes. These issues challenge the traditional supervised learning methods of fault diagnosis. To solve these problems, we develop an active learning strategy based on uncertainty and complexity. Therefore, a new diagnostic method for a gearbox is proposed based on the present active learning, empirical mode decomposition-singular value decomposition (EMD-SVD) and random forests (RF). First, the EMD-SVD is used to obtain feature vectors from raw signals. Second, the proposed active learning scheme selects the most valuable unlabeled samples, which are then labeled and added to the training data set. Finally, the RF, trained by the new training data, is employed to recognize the fault modes of a gearbox. Two cases are studied based on experimental gearbox fault diagnostic data, and a supervised learning method, as well as other active learning methods, are compared. The results show that the proposed method outperforms the two common types of methods, thus validating its effectiveness and superiority. INDEX TERMS Active learning, gearbox fault diagnosis, uncertainty and complexity, supervised learning.
We address the efficiency problem of personalized ranking from implicit feedback by hashing users and items with binary codes, so that top-N recommendation can be fast executed in a Hamming space by bit operations. However, current hashing methods for top-N recommendation fail to align their learning objectives (such as pointwise or pairwise loss) with the benchmark metrics for ranking quality (e.g. Average Precision, AP), resulting in sub-optimal accuracy. To this end, we propose a Discrete Listwise Personalized Ranking (DLPR) model that optimizes AP under discrete constraints for fast and accurate top-N recommendation. To resolve the challenging DLPR problem, we devise an efficient algorithm that can directly learn binary codes in a relaxed continuous solution space. Specifically, theoretical analysis shows that the optimal solution to the relaxed continuous optimization problem is exactly the same as that of the original discrete DLPR problem. Through extensive experiments on two real-world datasets, we show that DLPR consistently surpasses state-of-the-art hashing methods for top-N recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.