A pulse-width modulation (PWM) plus phase-shift control bidirectional dc-dc converter is proposed. In this converter, PWM control and phase-shift control are combined to reduce current stress and conduction losses, and to expand ZVS range. The operation principle and analysis of the converter are explained, and ZVS condition is derived. A prototype of PWM plus phaseshift bidirectional dc-dc converter is built to verify the analysis.
Full-order small-signal modelling and dynamic analysis of zero-voltage-switching (ZVS) phase-shift bidirectional DC-DC converters is studied. A general modelling method is proposed to develop the discretetime average model. This full-order model takes into account the leakage inductance current and the resonant transition intervals in order to realise ZVS. Both the leakage inductance current and the resonant transition intervals are the key to accurately predict the dynamic behaviour of the converter. A control-to-output-voltage transfer function is derived for the dual active bridge DC-DC converter, which is taken as an example to illustrate the modelling procedure. Experimental results confirm that the new model correctly predicts the small-signal frequency response up to one-third of the switching frequency and is more accurate than the previously presented models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.