A novel three-phase ac-ac sparse matrix converter having no energy storage elements and employing only 15 IGBTs, as opposed to 18 IGBTs of a functionally equivalent conventional ac-ac matrix converter, is proposed. It is shown that the realization effort could be further reduced to only nine IGBTs in an ultra sparse matrix converter (USMC) in the case where only unidirectional power flow is required and the fundamental phase displacement at the input and at the output is limited to
6.The dependency of the voltage and current transfer ratios of the sparse matrix converters on the operating parameters is analyzed and a space vector modulation scheme is described in combination with a zero current commutation method. Finally, the sparse matrix concept is verified by simulation and experimentally using a 6.8-kW/400-V very sparse matrix converter, which is implemented with 12 IGBT switches, and USMC prototypes.Index Terms-Ac-ac converter, matrix converter, reduced switch count converter, sparse matrix.
A simple analytical expression for the current stress on the DC-link capacitor caused by the load-side inverter of a voltage DC-link-converter system is derived. The DC-link capacitorcurrent RMS value is determined from the modulation depth and by the amplitude and the phase angle of the inverter output current assuming a sinusoidal inverter output current and a constant DC-link voltage. Despite neglecting the output-current ripple, the results of the analytical calculation are within 8% of measurements made from digital simulation and an experimental system, even if the output-current ripple is relatively high as in the case of low-frequency IGBT inverter systems. The simple analytical expression provides significant advantages over simulation methods for designing the DC-link capacitor of PWM converter systems.
The main aim of this paper is to improve the performance of high current dual active bridge converters when operated over a wide voltage range. A typical application is for fuel cell vehicles where a bi-directional interface between a 12V battery and a high voltage DC bus is required. The battery side voltage ranges from 11V to 16V while the fuel cell is operated between 220V and 447V and the required power is typically 1kW. Careful analysis shows that the high currents on the battery side cause significant design issues in order to obtain a high efficiency. The standard phase shift modulation method can result in high conduction and switching losses. This paper proposes a combined triangular and trapezoidal modulation method to reduce losses over the wide operating range. Approximately, a 2% improvement in efficiency can be expected. An experimental system is used to verify the improved performance of the dual active bridge using the proposed advanced modulation method. I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.