We have evaluated the thermal conductivity of Si/SiGe superlattice films by theoretical analysis and experiment. In experiments, the ultrahigh vacuum chemical vapor deposition is employed to form the Si/ Si 0.71 Ge 0.29 and Si/ Si 0.8 Ge 0.2 superlattice films. The cross-plane thermal conductivities of these superlattice films are measured based on the 3 method. In the theoretical analysis, the phonon transport in Si/ Si 1−x Ge x superlattice film is explored by solving the phonon Boltzmann transport equation. The dependence of the thermal conductivity of the Si/ Si 1−x Ge x superlattice films on the superlattice period, the ratio of layer thicknesses, and the interface roughness is of interest. The calculations show that when the layer thickness is on the order of one percentage of the mean free path or even thinner, the phonons encounter few intrinsic scatterings and consequently concentrate in the directions having high transmissivities. Nonlinear temperature distributions are observed near the interfaces, arising from the size confinement effect and resulting in a slight increase in the film thermal resistances. The interface resistance due to the interface scattering/ roughness, which is nearly independent of the film thickness, nonetheless dominates the effective thermal conductivity, especially when the superlattice period is small. Finally the experimental measurements agree with the theoretical predictions if the specular fraction associated with the interface is properly taken.
A quaternized polybenzimidazole (PBI) membrane was synthesized by grafting a dimethylimidazolium end-capped side chain onto PBI. The organic–inorganic hybrid membrane of the quaternized PBI was prepared via a silane-induced crosslinking process with triethoxysilylpropyl dimethylimidazolium chloride. The chemical structure and membrane morphology were characterized using NMR, FTIR, TGA, SEM, EDX, AFM, SAXS, and XPS techniques. Compared with the pristine membrane of dimethylimidazolium-functionalized PBI, its hybrid membrane exhibited a lower swelling ratio, higher mechanical strength, and better oxidative stability. However, the morphology of hydrophilic/hydrophobic phase separation, which facilitates the ion transport along hydrophilic channels, only successfully developed in the pristine membrane. As a result, the hydroxide conductivity of the pristine membrane (5.02 × 10−2 S cm−1 at 80 °C) was measured higher than that of the hybrid membrane (2.22 × 10−2 S cm−1 at 80 °C). The hydroxide conductivity and tensile results suggested that both membranes had good alkaline stability in 2M KOH solution at 80 °C. Furthermore, the maximum power densities of the pristine and hybrid membranes of dimethylimidazolium-functionalized PBI reached 241 mW cm−2 and 152 mW cm−2 at 60 °C, respectively. The fuel cell performance result demonstrates that these two membranes are promising as AEMs for fuel cell applications.
The present paper studies the thermo-mechanical performance of thermoelectric modules by utilizing the Finite Element Analysis FEA simulation software ANSYS. A typical type TEG device with 32 pairs of legs was constructed. Three different thickness for the pads with 100um, 500um, and 1000um were given for investigating the geometry effect. The thermo-electric results got well confirmed compared with analytical solution. The maximum Von Mises stress occurs on the contact surface between top pad and top substrate due to the large CTE mismatch between the copper pad and the AlN substrate, especially in the higher temperature case. This stress might lead to module failure and reduce the reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.