Gamma-aminobutyric acid (GABA) is a ubiquitous four-carbon, non-protein amino acid. GABA has been widely studied in animal central nervous systems, where it acts as an inhibitory neurotransmitter. In plants, it is metabolized through the GABA shunt pathway, a bypass of the tricarboxylic acid (TCA) cycle. Additionally, it can be synthesized through the polyamine metabolic pathway. GABA acts as a signal in
Agrobacterium tumefaciens
-mediated plant gene transformation and in plant development, especially in pollen tube elongation (to enter the ovule), root growth, fruit ripening, and seed germination. It is accumulated during plant responses to environmental stresses and pathogen and insect attacks. A high concentration of GABA elevates plant stress tolerance by improving photosynthesis, inhibiting reactive oxygen species (ROS) generation, activating antioxidant enzymes, and regulating stomatal opening in drought stress. The transporters of GABA in plants are reviewed in this work. We summarize the recent research on GABA function and transporters with the goal of providing a review of GABA in plants.
Na + /H + exchanger catalyzes the countertransport of Na + and H + across membranes. Using the rapid amplification of cDNA ends method, a Na + /H + antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain ( 87 LFFIYLLPPI 96 ) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na + /Li + -sensitive phenotype of a yeast mutant that was deficient in the endosomal-vacuolar Na + /H + antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na + /H + antiporter and play an important role in salt tolerance of T. halophila.
gamma-Aminobutyrate transaminase (GABA-T) catalyzes the conversion of GABA to succinic semialdehyde. Using differential display PCR and cDNA library screening, a full-length GABA-T cDNA (OsGABA-T) was isolated from rice (Oryza sativa) leaves infected with an incompatible race of Magnaporthe grisea. The deduced amino acid sequence comprises 483 amino acid residues and shares 85-69% identity with GABA-T sequences from other plants. OsGABA-T expression is induced by blast fungus infection, mechanical wounding and ultraviolet radiation in rice leaves and is not detected in normal rice organs. This gene is also induced by defense signal molecules such as salicylic acid and abscisic acid, but not by jasmonic acid. Our data suggest that OsGABA-T (GABA shunt) may play a role in restricting the levels of cell death during the host-pathogen interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.