The device under testing was a plastic dynamic random access memory based on a donor-functionalized polyimide (TP6F-PI), which exhibited the ability to write, read, erase, and refresh the electrical states. The device had an ON/OFF current ratio up to 105, promising minimal misreading error. Both the on and off states were stable under a constant voltage stress of 1 V and survived up to 108 read cycles at 1 V.
An ITO/TPAPAM‐GO/Al memory device (see figure; ITO = indium tin oxide, TPAPAM‐GO = graphene oxide covalently grafted with triphenylamine‐based polyazomethine) exhibits typical bistable electrical switching and a nonvolatile rewritable memory effect with a turn‐on voltage of −1.0 V and an ON/OFF‐state current ratio of more than 103. Both ON and OFF state are stable under a constant voltage stress and survive up to 108 read cycles at a read voltage of −1.0 V.
Neuromorphic computing, which emulates the biological neural systems could overcome the high‐power consumption issue of conventional von‐Neumann computing. State‐of‐the‐art artificial synapses made of two‐terminal memristors, however, show variability in filament formation and limited capacity due to their inherent single presynaptic input design. Here, a memtransistor‐based artificial synapse is realized by integrating a memristor and selector transistor into a multiterminal device using monolayer polycrys‐talline‐MoS2 grown by a scalable chemical vapor deposition (CVD) process. Notably, the memtransistor offers both drain‐ and gate‐tunable nonvolatile memory functions, which efficiently emulates the long‐term potentiation/depression, spike‐amplitude, and spike‐timing‐dependent plasticity of biological synapses. Moreover, the gate tunability function that is not achievable in two‐terminal memristors, enables significant bipolar resistive states switching up to four orders‐of‐magnitude and high cycling endurance. First‐principles calculations reveal a new resistive switching mechanism driven by the diffusion of double sulfur vacancy perpendicular to the MoS2 grain boundary, leading to a conducting switching path without the need for a filament forming process. The seamless integration of multiterminal memtransistors may offer another degree‐of‐freedom to tune the synaptic plasticity by a third gate terminal for enabling complex neuromorphic learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.