Enantiomeric separations of the adrenergic compounds adrenaline, noradrenaline, and isoprenaline were studied. Electromigrative separations were performed in uncoated fused silica capillaries using streptomycin-modified gold nanoparticles (ST-AuNPs) as an additive to the background electrolyte. The ST-AuNPs are shown to serve as an effective chiral selector. The modified AuNPs were characterized in terms of size and zeta potential, and by IR and UV-vis spectra. The effects of ST-AuNP concentration, pH value, temperature, and separation voltage on the separations were systematically studied. Under optimized experimental conditions, racemic mixtures of the respective adrenergic drugs were baseline-separated within 7 min with a resolution of up to 7.5. The relative standard deviations of the resolution in inter-day and intra-day studies (n = 5) were generally <5%. Graphical abstract Schematic of the method for enantiomeric separations. (A): At low concentrations of streptavidinylated gold nanoparticles (ST-AuNPs), the better matching enantiomer is preferably "transported" by the ST-AuNPs; (B) ST-AuNP concentration increased to an optimal value; (C): The ST-AuNP concentration is too high; even poorly matching enantiomers will be transported simultaneously.
Breast cancer is a heterogeneous disease. In particular, triple-negative breast cancer (TNBC) comprises various molecular subgroups with unclear identities and currently has few targeted treatment options. Our previous study identified protein C receptor (Procr) as a surface marker on mammary stem cells (MaSCs) located in the basal layer of the normal mammary gland. Given the possible connection of TNBC with basal layer stem cells, we conducted comparative analyses of Procr in breast cancers of mouse and human origin. In mouse mammary tumors, we showed that Procr + cells are enriched for cancer stem cells (CSCs) in Wnt1 basal-like tumors, but not in Brca1 basal-like tumors or PyVT luminal tumors. In human cancers, PROCR was robustly expressed in half of TNBC cases. Experiments with patient-derived xenografts (PDXs) revealed that PROCR marks CSCs in this discrete subgroup (referred to as PROCR + TNBC). Interfering with the function of PROCR using an inhibitory nanobody reduced the CSC numbers, arrested tumor growth and prevented rapid tumor recurrence. Our data suggest a key role of MaSC in breast tumorigenesis. Moreover, our work indicates that PROCR can be used as a biomarker to stratify TNBC into clinically relevant subgroups and may provide a novel targeted treatment strategy for this clinically important tumor subtype.
The protein C receptor (PROCR) has emerged as a stem cell marker in several normal tissues and has also been implicated in tumor progression. However, the functional role of PROCR and the signaling mechanisms downstream of PROCR remain poorly understood. Here, we dissected the PROCR signaling pathways in breast cancer cells. Combining protein array, knockdown, and overexpression methods, we found that PROCR concomitantly activates multiple pathways. We also noted that PROCR-dependent ERK and PI3k-Akt-mTOR signaling pathways proceed through Src kinase and transactivation of insulin-like growth factor 1 receptor (IGF-1R). These pathway activities led to the accumulation of c-Myc and cyclin D1. On the other hand, PROCR-dependent RhoA-ROCK-p38 signaling relied on coagulation factor II thrombin receptor (F2R). We confirmed these findings in primary cells isolated from triple-negative breast cancer-derived xenografts (PDX) that have high expression of PROCR. To the best our knowledge, this is the first comprehensive study of PROCR signaling in breast cancer cells, and its findings also shed light on the molecular mechanisms of PROCR in stem cells in normal tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.