Summary RP2 mutations cause a severe form of X-linked retinitis pigmentosa (XLRP). The mechanism of RP2 -associated retinal degeneration in humans is unclear, and animal models of RP2 XLRP do not recapitulate this severe phenotype. Here, we developed gene-edited isogenic RP2 knockout (RP2 KO) induced pluripotent stem cells (iPSCs) and RP2 patient-derived iPSC to produce 3D retinal organoids as a human retinal disease model. Strikingly, the RP2 KO and RP2 patient-derived organoids showed a peak in rod photoreceptor cell death at day 150 (D150) with subsequent thinning of the organoid outer nuclear layer (ONL) by D180 of culture. Adeno-associated virus-mediated gene augmentation with human RP2 rescued the degeneration phenotype of the RP2 KO organoids, to prevent ONL thinning and restore rhodopsin expression. Notably, these data show that 3D retinal organoids can be used to model photoreceptor degeneration and test potential therapies to prevent photoreceptor cell death.
With marketing approval of the first ocular gene therapy, and other gene therapies in clinical trial, treatments for inherited retinal degenerations (IRDs) have become a reality. Biallelic mutations in the tubby like protein 1 gene ( TULP1 ) are causative of IRDs in humans; a mouse knock-out model ( Tulp1−/− ) is characterized by a similar disease phenotype. We developed a Tulp1 supplementation therapy for Tulp1−/− mice. Utilizing subretinal AAV2/5 delivery at postnatal day (p)2–3 and rhodopsin-kinase promoter ( GRK1P ) we targeted Tulp1 to photoreceptor cells exploring three doses, 2.2E9, 3.7E8, and 1.2E8 vgs. Tulp1 mRNA and TULP1 protein were assessed by RT-qPCR, western blot and immunocytochemistry, and visual function by electroretinography. Our results indicate that TULP1 was expressed in photoreceptors; achieved levels of Tulp1 mRNA and protein were similar to wild type levels at p20. However, the thickness of the outer nuclear layer (ONL) did not improve in treated Tulp1−/− mice. There was a small and transient electroretinography benefit in the treated retinas at 4 weeks of age (not observed by 6 weeks) when using 3.7E8 vg dose. Dark-adapted mixed rod and cone a- and b-wave amplitudes were 24.3 ± 13.5 μV and 52.2 ± 31.7 μV in treated Tulp1−/− mice, which were significantly different ( p < 0.001, t -test), from those detected in untreated eyes (7.1 ± 7.0 μV and 9.4 ± 15.1 μV, respectively). Our results indicate that Tulp1 supplementation in photoreceptors may not be sufficient to provide robust benefit in Tulp1−/− mice. As such, further studies are required to fine tune the Tulp1 supplementation therapy, which, in principle, should rescue the Tulp1−/− phenotype.
Optic Atrophy 1 (OPA1) is a mitochondrially targeted GTPase that plays a pivotal role in mitochondrial health, with mutations causing severe mitochondrial dysfunction and typically associated with Dominant Optic Atrophy (DOA), a progressive blinding disease involving retinal ganglion cell loss and optic nerve damage. In the current study, we investigate the use of codon-optimized versions of OPA1 isoform 1 and 7 as potential therapeutic interventions in a range of in vitro and in vivo models of mitochondrial dysfunction. We demonstrate that both isoforms perform equally well in ameliorating mitochondrial dysfunction in OPA1 knockout mouse embryonic fibroblast cells but that OPA1 expression levels require tight regulation for optimal benefit. Of note, we demonstrate for the first time that both OPA1 isoform 1 and 7 can be used independently to protect spatial visual function in a murine model of retinal ganglion cell degeneration caused by mitochondrial dysfunction, as well as providing benefit to mitochondrial bioenergetics in DOA patient derived fibroblast cells. These results highlight the potential value of OPA1-based gene therapy interventions.
Mutations in RP2 lead to a severe form of X-linked retinitis pigmentosa (XLRP). RP2 functions as a GTPase activating protein (GAP) for the small GTPase ARL3, which is essential for cilia function and for photoreceptor development and maintenance. The mechanisms of RP2 associated retinal degeneration in humans are poorly understood, and genetically engineered animal models of RP2 XLRP present with differing retinal phenotypes and slow degeneration suggesting potential species differences. Here, we developed CRISPR gene edited isogenic RP2 knock-out (RP2 KO) induced pluripotent stem cells (iPSC) and RP2 patient derived iPSC to produce 3D retinal organoids as a human retinal disease model. The isogenic RP2 KO retinal organoids and two unrelated RP2 patient iPSC lines produced retinal organoids with a defined photoreceptor cell layer (ONL) containing rod and cone photoreceptors. Strikingly the RP2 KO and RP2 patient derived organoids showed a thinning of the ONL by 180 days (D180) of culture, which was associated with a spike in cell death in the ONL at D150 of differentiation.RNA sequencing confirmed induction of cell death pathways in the RP2 null organoids at this stage. Photoreceptor cell death and ONL thinning was attributed to cells undergoing terminal rod cell differentiation characterized by reduced RHO expression and fewer rhodopsin immunoreactive photoreceptors. Gene augmentation with a human RP2 transgene in an AAV2/5 vector efficiently transduced RP2 KO organoids and led to high levels of RP2 expression in both rods and cones. Importantly, the viral transduction significantly increased ONL thickness and restored rhodopsin expression, suggesting rescue of the RP2 degeneration phenotype. These data show that 3D retinal organoids can be used to model molecular defects associated with inherited retinal disease, photoreceptor cell death and also to test potential therapies targeted to prevent photoreceptor degeneration.
AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.