Mutational heterogeneity represents a significant barrier to development of therapies for many dominantly inherited diseases. For example, >100 mutations in the rhodopsin gene (RHO) have been identified in patients with retinitis pigmentosa (RP). The development of therapies for dominant disorders that correct the primary genetic lesion and overcome mutational heterogeneity is challenging. Hence, therapeutics comprising two elements--gene suppression in conjunction with gene replacement--have been investigated. Suppression is targeted to a site independent of the mutation; therefore, both mutant and wild-type alleles are suppressed. In parallel with suppression, a codon-modified replacement gene refractory to suppression is provided. Both in vitro and in vivo validation of suppression and replacement for RHO-linked RP has been undertaken in the current study. RNA interference (RNAi) has been used to achieve ~90% in vivo suppression of RHO in photoreceptors, with use of adeno-associated virus (AAV) for delivery. Demonstration that codon-modifed RHO genes express functional wild-type protein has been explored transgenically, together with in vivo expression of AAV-delivered RHO-replacement genes in the presence of targeting RNAi molecules. Observation of potential therapeutic benefit from AAV-delivered suppression and replacement therapies has been obtained in Pro23His mice. Results provide the first in vivo indication that suppression and replacement can provide a therapeutic solution for dominantly inherited disorders such as RHO-linked RP and can be employed to circumvent mutational heterogeneity.
The chromatin remodeler CHD5 is expressed in neural tissue and is frequently deleted in aggressive neuroblastoma. Very little is known about the function of CHD5 in the nervous system or its mechanism of action. Here we report that depletion of Chd5 in the developing neocortex blocks neuronal differentiation and leads to an accumulation of undifferentiated progenitors. CHD5 binds a large cohort of genes and is required for facilitating the activation of neuronal genes. It also binds a cohort of Polycomb targets and is required for the maintenance of H3K27me3 on these genes. Interestingly, the chromodomains of CHD5 directly bind H3K27me3 and are required for neuronal differentiation. In the absence of CHD5, a subgroup of Polycomb-repressed genes becomes aberrantly expressed. These findings provide insights into the regulatory role of CHD5 during neurogenesis and suggest how inactivation of this candidate tumor suppressor might contribute to neuroblastoma.
For dominantly inherited disorders development of gene therapies, targeting the primary genetic lesion has been impeded by mutational heterogeneity. An example is rhodopsin-linked autosomal dominant retinitis pigmentosa with over 150 mutations in the rhodopsin gene. Validation of a mutation-independent suppression and replacement gene therapy for this disorder has been undertaken. The therapy provides a means of correcting the genetic defect in a mutation-independent manner thereby circumventing the mutational diversity. Separate adeno-associated virus (AAV) vectors were used to deliver an RNA interference (RNAi)-based rhodopsin suppressor and a codon-modified rhodopsin replacement gene resistant to suppression due to nucleotide alterations at degenerate positions over the RNAi target site. Viruses were subretinally coinjected into P347S mice, a model of dominant rhodopsin-linked retinitis pigmentosa. Benefit in retinal function and structure detected by electroretinography (ERG) and histology, respectively, was observed for at least 5 months. Notably, the photoreceptor cell layer, absent in 5-month-old untreated retinas, contained 3–4 layers of nuclei, whereas photoreceptor ultrastructure, assessed by transmission electron microscopy (TEM) improved significantly. The study provides compelling evidence that codelivered suppression and replacement is beneficial, representing a significant step toward the clinic. Additionally, dual-vector delivery of combined therapeutics represents an exciting approach, which is potentially applicable to other inherited disorders.
Mutational heterogeneity represents one of the greatest barriers impeding the progress toward the clinic of gene therapies for many dominantly inherited disorders. A general strategy of gene suppression in conjunction with replacement has been proposed to overcome this mutational heterogeneity. In the current study, various aspects of this strategy are explored for a dominant form of the retinal degeneration, retinitis pigmentosa (RP), caused by mutations in the rhodopsin gene (RHO-adRP). While > 200 mutations have been identified in rhodopsin (RHO), in principle, suppression and replacement may be employed to provide a single mutation-independent therapeutic for this form of the disorder. In the study we demonstrate in a transgenic mouse simulating human RHO-adRP that RNA interference-based suppression, together with gene replacement utilizing the endogenous mouse gene as the replacement, provides significant benefit as evaluated by electroretinography (ERG). Moreover, this is mirrored histologically by preservation of photoreceptors. AAV-based vectors were utilized for in vivo delivery of the therapy to the target cell type, the photoreceptors. The results demonstrate that RNAi-based mutation-independent suppression and replacement can provide benefit for RHO-adRP and promote the therapeutic approach as potentially beneficial for other autosomal dominantly inherited disorders.
Summary RP2 mutations cause a severe form of X-linked retinitis pigmentosa (XLRP). The mechanism of RP2 -associated retinal degeneration in humans is unclear, and animal models of RP2 XLRP do not recapitulate this severe phenotype. Here, we developed gene-edited isogenic RP2 knockout (RP2 KO) induced pluripotent stem cells (iPSCs) and RP2 patient-derived iPSC to produce 3D retinal organoids as a human retinal disease model. Strikingly, the RP2 KO and RP2 patient-derived organoids showed a peak in rod photoreceptor cell death at day 150 (D150) with subsequent thinning of the organoid outer nuclear layer (ONL) by D180 of culture. Adeno-associated virus-mediated gene augmentation with human RP2 rescued the degeneration phenotype of the RP2 KO organoids, to prevent ONL thinning and restore rhodopsin expression. Notably, these data show that 3D retinal organoids can be used to model photoreceptor degeneration and test potential therapies to prevent photoreceptor cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.