Eukaryotic cells repair DNA double-strand breaks (DSBs) by at least two pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ).Rad54 participates in the first recombinational repair pathway while Ku proteins are involved in NHEJ. To investigate the distinctive as well as redundant roles of these two repair pathways, we analyzed the mutants RAD54 -/-, KU70 -/-and RAD54 -/-/KU70 -/-, generated from the chicken B-cell line DT40. We found that the NHEJ pathway plays a dominant role in repairing γ-radiation-induced DSBs during G 1 -early S phase while recombinational repair is preferentially used in late S-G 2 phase. RAD54 -/-/KU70 -/-cells were profoundly more sensitive to γ-rays than either single mutant, indicating that the two repair pathways are complementary. Spontaneous chromosomal aberrations and cell death were observed in both RAD54 -/-and RAD54 -/-/KU70 -/-cells, with RAD54 -/-/KU70 -/-cells exhibiting significantly higher levels of chromosomal aberrations than RAD54 -/-cells. These observations provide the first genetic evidence that both repair pathways play a role in maintaining chromosomal DNA during the cell cycle.
SUMMARY Most adult stem cells, including hematopoietic stem cells (HSCs), are maintained in a quiescent or resting state in vivo. Quiescence is widely considered to be an essential protective mechanism for stem cells that minimizes endogenous stress caused by cellular respiration and DNA replication. Here, we demonstrate that HSC quiescence can also have detrimental effects. We found that HSCs have unique cell-intrinsic mechanisms ensuring their survival in response to ionizing irradiation (IR), which include enhanced pro-survival gene expression and strong activation of p53-mediated DNA damage response. We show that quiescent and proliferating HSCs are equally radioprotected but use different types of DNA repair mechanisms. We describe how nonhomologous end joining (NHEJ)-mediated DNA repair in quiescent HSCs is associated with acquisition of genomic rearrangements, which can persist in vivo and contribute to hematopoietic abnormalities. Our results demonstrate that quiescence is a double-edged sword that renders HSCs intrinsically vulnerable to mutagenesis following DNA damage.
Haematopoietic stem cells (HSCs) self-renew for life, thereby making them one of the few blood cells that truly age1,2. Paradoxically, although HSCs numerically expand with age, their functional activity declines over time, resulting in degraded blood production and impaired engraftment following transplantation2. While many drivers of HSC ageing have been proposed2–5, the reason why HSC function degrades with age remains unknown. Here we show that cycling old HSCs in mice have heightened levels of replication stress associated with cell cycle defects and chromosome gaps or breaks, which are due to decreased expression of mini-chromosome maintenance (MCM) helicase components and altered dynamics of DNA replication forks. Nonetheless, old HSCs survive replication unless confronted with a strong replication challenge, such as transplantation. Moreover, once old HSCs re-establish quiescence, residual replication stress on ribosomal DNA (rDNA) genes leads to the formation of nucleolar-associated γH2AX signals, which persist owing to ineffective H2AX dephosphorylation by mislocalized PP4c phosphatase rather than ongoing DNA damage. Persistent nucleolar γH2AX also acts as a histone modification marking the transcriptional silencing of rDNA genes and decreased ribosome biogenesis in quiescent old HSCs. Our results identify replication stress as a potent driver of functional decline in old HSCs, and highlight the MCM DNA helicase as a potential molecular target for rejuvenation therapies.
Mice lacking the gene encoding poly(ADP-ribosyl) transferase (PARP or ADPRT) display no phenotypic abnormalities, although aged mice are susceptible to epidermal hyperplasia and obesity in a mixed genetic background. Whereas embryonic fibroblasts lacking PARP exhibit normal DNA excision repair, they grow more slowly in vitro. Here we investigated the putative roles of PARP in cell proliferation, cell death, radiosensitivity, and DNA recombination, as well as chromosomal stability. We show that the proliferation deficiency in vitro and in vivo is most likely caused by a hypersensitive response to environmental stress. Although PARP is specifically cleaved during apoptosis, cells lacking this molecule apoptosed normally in response to treatment with anti-Fas, tumor neurosis factor ␣, ␥-irradiation, and dexamethasone, indicating that PARP is dispensable in apoptosis and that PARP−/− thymocytes are not hypersensitive to ionizing radiation. Furthermore, the capacity of mutant cells to carry out immunoglobulin class switching and V(D)J recombination is normal. Finally, primary PARP mutant fibroblasts and splenocytes exhibited an elevated frequency of spontaneous sister chromatid exchanges and elevated micronuclei formation after treatment with genotoxic agents, establishing an important role for PARP in the maintenance of genomic integrity.
Sister chromatid exchange (SCE) frequency is a commonly used index of chromosomal stability in response to environmental or genetic mutagens. However, the mechanism generating cytologically detectable SCEs and, therefore, their prognostic value for chromosomal stability in mitotic cells remain unclear. We examined the role of the highly conserved homologous recombination (HR) pathway in SCE by measuring SCE levels in HR-defective vertebrate cells. Spontaneous and mitomycin C-induced SCE levels were significantly reduced for chicken DT40 B cells lacking the key HR genes RAD51 and RAD54 but not for nonhomologous DNA end-joining (NHEJ)-defective KU70 ؊/؊ cells. As measured by targeted integration efficiency, reconstitution of HR activity by expression of a human RAD51 transgene restored SCE levels to normal, confirming that HR is the mechanism responsible for SCE. Our findings show that HR uses the nascent sister chromatid to repair potentially lethal DNA lesions accompanying replication, which might explain the lethality or tumorigenic potential associated with defects in HR or HR-associated proteins.Symmetrical exchanges between newly replicated chromatids and their sisters can be visualized cytologically in vertebrate cells if the DNA of one chromatid is labelled with 5-bromodeoxyuridine (BUdR) during synthesis. Sister chromatid exchanges (SCEs) can be induced by various genotoxic treatments (10), suggesting that SCEs reflect a DNA repair process. Cytological assessment of SCE levels in peripheral blood lymphocytes is used as an index of the mutagenic potential of environmental factors. More importantly, ϳ10 SCEs occur spontaneously in normally cycling human cells (5, 8), suggesting a link between SCE and DNA replication. Elevated spontaneous SCE levels are observed in cells from Bloom syndrome patients (9), in mouse cells that lack poly(ADP-ribose) polymerase (29) or KU70 (15), and in hamster cells with defects in XRCC1 (28), but the causal relationships between these enzymes and SCE are not clear.While the phenomenon of SCE has long been established (27) and many observations about the induction of SCEs have been made, their molecular basis remains obscure. SCE is intimately associated with DNA replication, and eukaryotic cells exposed to DNA-damaging agents in G 2 show elevated SCE levels only after completing a subsequent replication cycle (32). Homologous recombination (HR) was suggested as one of the mechanisms responsible (13,14). While HR occurs between sister chromatids in yeast as a means to replicate around UV-induced lesions (12), it has not been considered constitutively active during metazoan mitosis, perhaps because of the predominance of the nonhomologous DNA end-joining (NHEJ) pathway (30). In addition, the lack of recombinational repair mutants precluded direct testing of HR's involvement in SCE, so other models evolved. It was proposed that SCEs result from strand switching at stalled replication forks (20). Another model involved topoisomerase II action at coincident breaks at replication for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.