In this work, we evaluated the levels of genetic diversity in 38 complete Genomes of SARS-CoV-2 from six countries in South America, using specific methodologies for paired FST, AMOVA, mismatch, demographic and spatial expansions, molecular diversity and for the time of evolutionary divergence. The analyses showed non-significant evolutionary divergences within and between the six countries, as well as a significant similarity to the time of genetic evolutionary divergence between all populations. Thus, it seems safe to affirm that we will find similar results for the other Countries of South America, reducing speculation about the existence of rapid and silent mutations that, although there are as we have shown in this work, do not increase, until this moment, the genetic variability of the Virus, a fact that would hinder the work with molecular targets for vaccines and drugs in general.
Although some Countries in South America have implemented laboratory and patient management protocols for the new coronavirus, the lack of access to basic sanitation and hygiene measures, as well as the lack of drugs and vaccines, has significantly interfered with the epidemiological mechanics of the virus, emphasizing its implications. Therefore, trying to understand the evolutionary aspects of the virus, emerges as another strategy that can help in the most varied measures of prophylaxis. In this work, we evaluated the levels of genetic diversity in 38 complete Genomes of SARS-CoV-2 from six countries in South America, using specific methodologies for paired FST, AMOVA, mismatch, demographic and spatial expansions, molecular diversity and for the time of evolutionary divergence. The analyses showed non-significant evolutionary divergences within and between the six countries, as well as a significant similarity to the time of genetic evolutionary divergence between all populations. Thus, it seems safe to affirm that we will find similar results for the other Countries of South America, reducing speculation about the existence of rapid and silent mutations that, although there are as we have shown in this work, do not increase, until this moment, the genetic variability of the Virus, a fact that would hinder the work with molecular targets for vaccines and drugs in general.
In this work, we evaluated the levels of genetic diversity in 38 complete genomes of SARS-CoV-2, publicly available on the National Center for Biotechnology Information (NCBI) platform and from six countries in South America (Brazil, Chile, Peru, Colombia, Uruguay and Venezuela with 16, 11, 1, 1, 1, 7 haplotypes, respectively), all with an extension of 29,906 bp and Phred values ≥ 40. These haplotypes were previously used for phylogenetic analyses, following the alignment protocols of the MEGA X software; where all gaps and unconserved sites were extracted for the construction of phylogenetic trees. The specific methodologies for Paired FST estimators, Molecular Variance (AMOVA), Genetic Distance, mismatch, demographic and spatial expansion analyses, molecular diversity and evolutionary divergence time analyses, were obtained using 20,000 random permutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.