The migratory behavior of neuroblasts after a stroke is poorly understood. Using time-lapse microscopy, we imaged migration of neuroblasts and cerebral vessels in living brain slices of adult doublecortin (DCX, a marker of neuroblasts) enhanced green fluorescent protein (eGFP) transgenic mice that were subjected to 7 days of stroke. Our results show that neuroblasts originating in the subventricular zone (SVZ) of adult mouse brain laterally migrated in chains or individually to reach the ischemic striatum. The chains were initially formed at the border between the SVZ and the striatum by neuroblasts in the SVZ and then extended to the striatum. The average speed of DCXeGFP-expressing cells within chains was 28.67±1.04 lm/h, which was significantly faster (P < 0.01) than the speed of the cells in the SVZ (17.98 ± 0.57 lm/h). Within the ischemic striatum, individual neuroblasts actively extended or retracted their processes, suggestive of probing the immediate microenvironment. The neuroblasts close to cerebral blood vessels exhibited multiple processes. Our data suggest that neuroblasts actively interact with the microenvironment to reach the ischemic striatum by multiple migratory routes.
Neural and oligodendrocyte progenitor cells in the adult brain express Ascl1 (also known as Mash1), a basic helix-loop-helix transcription factor. We examined the progeny and fate of this progenitor population in adult male Ascl1-CreER(TM);R26R-stop-yellow fluorescent protein mice subjected to right middle cerebral occlusion over 60 days after stroke using inducible Cre recombination to label Ascl1-expressing cells at poststroke days 2 to 6 in vivo. Seven days after stroke, a substantial increase in Ascl1 lineage cells was detected in the ipsilateral subventricular zone (SVZ), striatum, and corpus callosum. These cells exhibited proliferating progenitor cell phenotypes (Sox2(+), BrdU(+), and Ki67(+)). Although Ascl1 lineage cells in the ipsilateral SVZ gradually decreased during 14 to 60 days after stroke, Ascl1 lineage cells in the ischemic striatum revealed a remarkable increase during this period. Thirty and sixty days after stroke, Ascl1 lineage cells in the ischemic striatum gave rise to GABAergic neurons and mature oligodendrocytes. In contrast, none of the Ascl1 lineage cells in the contralateral striatum exhibited neuronal and oligodendrocyte phenotypes. Moreover, Ascl1 lineage cells in the corpus callosum were only fated to become mature oligodendrocytes. Our data suggest that Ascl1 lineage cells contribute to stroke-induced neurogenesis and oligodendrogenesis in the adult ischemic brain.
Doublecortin (DCX) is a microtubule (MT) binding protein that induces growth arrest at the G2-M phase of cell cycle in glioma and suppresses tumor xenograft in immunocompromised hosts. DCX expression was found in neuronal cells, but lacking in glioma cells. We tested the hypothesis that DCX inhibits glioma U87 cell mitosis and invasion. Our data showed that DCX synthesizing U87 cells underwent mitotic MT spindle catastrophe in a neurabin II dependent pathway. Synthesis of both DCX and neurabin II were required to induce apoptosis in U87 and human embryonic kidney 293T cells. In DCX expressing U87 cells, association of phosphorylated DCX with protein phosphatase-1 (PP1) in the cytosol disrupted the interaction between kinesin-13 and PP1 in the nucleus and yielded spontaneously active kinesin-13. The activated kinesin-13 caused mitotic MT catastrophe in spindle checkpoint. Phosphorylated-DCX induced depolymerization of actin filaments in U87 cells, down-regulated matrix metalloproteinases-2 and -9, and inhibited glioma U87 cell invasion in a neurabin II dependent pathway. Thus, localization of the DCX-neurabin II-PP1 complex in the cytosol of U87 tumor cells inhibited PP1 phosphatase activities leading to antiglioma effects via (1) mitotic MT spindle catastrophe that blocks mitosis and (2) depolymerization of actin that inhibits glioma cell invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.