Electrical Network-on-Chip (NoC) faces critical challenges in meeting the high performance and low power consumption requirements for future multicore processors interconnection. Recent tremendous advances in CMOS compatible optical components give the potential for photonics to deliver an efficient NoC performance at an acceptable energy cost. However, the lack of in flight processing and buffering of optical data made the realization of a fully optical NoC complicated. A hybrid architecture which uses optical high bandwidth transfer and a tiny electrical control network can take advantage of both interconnection methods to offer an efficient performance-per-watt infrastructure to connect multicore processors and System-on-Chip (SoC). In this paper, we propose a hybrid photonic torus NoC (HPNoC) that uses a predictive switching to improve the performance of a hybrid architecture. By using prediction techniques, we can reduce the path set up latency for the electrical control network hence improving the overall end-to-end delay for communication in the HPNoC. Simulation results using a cycle accurate simulator under uniform, neighbor and bitreversal traffic patterns for 64 nodes show that predictive switching considerably improves the HPNoC overall performance.
Electrical network-on-chip (NoC) faces critical challenges in meeting the high performance and low power consumption requirements for future multicore processors interconnection. Re-
244International Journal of Networking and Computing cent tremendous advances in CMOS compatible optical components give the potential for photonics to deliver an efficient NoC performance at an acceptable energy cost. However, the lack of in flight processing and buffering of optical data made the realization of a fully optical NoC complicated. A hybrid architecture which uses optical high bandwidth transfer and an electrical control network can take advantage of both interconnection methods to offer an efficient performance-per-watt infrastructure to connect multicore processors and system-on-chip (SoC). In this paper, we propose a predictive switching and a reservation based path setup techniques to reduce the path setup latency of such hybrid photonic network-on-chip (HPNoC). By using these techniques, it is possible to reduce the latency for end-to-end communication in a HPNoC improving its overall performance. In the simulation, we use a cycle accurate simulator under uniform, neighbor, and bitreversal traffic patterns for a 64-node torus topology. The results show that the proposed techniques considerably improve the overall latency of HPNoC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.