We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 µs at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation.
Natural killer (NK) cells are lymphocytes involved in antimicrobial and antitumoral immune responses. Using N-ethyl-N-nitrosourea mutagenesis in mice, we identified a mutant with increased resistance to viral infections because of the presence of hyperresponsive NK cells. Whole-genome sequencing and functional analysis revealed a loss-of-function mutation in the Ncr1 gene encoding the activating receptor NKp46. The down-regulation of NK cell activity by NKp46 was associated with the silencing of the Helios transcription factor in NK cells. NKp46 was critical for the subsequent development of antiviral and antibacterial T cell responses, which suggests that the regulation of NK cell function by NKp46 allows for the optimal development of adaptive immune responses. NKp46 blockade enhanced NK cell reactivity in vivo, which could enable the design of immunostimulation strategies in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.