SummaryCheckpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.
SummaryNatural killer (NK) cells are innate lymphoid cells (ILCs) involved in antimicrobial and antitumoral responses. Several NK cell subsets have been reported in humans and mice, but their heterogeneity across organs and species remains poorly characterized. We assessed the diversity of human and mouse NK cells by single-cell RNA sequencing on thousands of individual cells isolated from spleen and blood. Unbiased transcriptional clustering revealed two distinct signatures differentiating between splenic and blood NK cells. This analysis at single-cell resolution identified three subpopulations in mouse spleen and four in human spleen, and two subsets each in mouse and human blood. A comparison of transcriptomic profiles within and between species highlighted the similarity of the two major subsets, NK1 and NK2, across organs and species. This unbiased approach provides insight into the biology of NK cells and establishes a rationale for the translation of mouse studies to human physiology and disease.
NKp46 is a cell surface receptor expressed on natural killer (NK) cells, on a minute subset of T cells, and on a population of innate lymphoid cells that produce
Monocytes can have important effects on the polarization and expansion of lymphocytes and may contribute to shaping primary and memory T‐cell responses in humans and mice. However, their precise contribution in terms of cellular subsets and the molecular mechanisms involved remains to be determined. Mouse monocytes originate from a bone marrow progenitor, the macrophage and DC precursor (MDP), which also gives rise to conventional dendritic cells through a separate differentiation pathway. Mouse monocytes may be grouped in different functional subsets. The CD115+ Gr1+ ‘inflammatory’ monocyte subset can give rise not only to immunostimulatory ‘TipDCs’ in infected mice but also to immunosuppressive ‘myeloid‐derived suppressor cells’ in tumor‐bearing mice. CD115+ Gr1+ monocytes can also contribute to the renewal of several resident subsets of macrophages and DCs, such as microglia and Langerhans cells, in inflammatory conditions. The CD115+ Gr1− ‘resident’ monocyte subset patrols blood vessels in the steady state and extravasates during infection with Listeria monocytogenes or in the healing myocardium. CD115+ Gr1− monocytes are responsible for an early and transient inflammatory burst during Lm infection, which may play a role in the recruitment of other effector cells and subsequently differentiate toward ‘M2’‐like macrophages that may be involved in wound healing. More research will no doubt confirm the existence of more functional subsets, the developmental relationship between mouse subsets as well as the correspondence between mouse subsets and human subsets of monocytes. We will discuss here the potential roles of monocytes in the immune response, the existence of functional subsets and their relationship with other myeloid cells, including dendritic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.