α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are of fundamental importance in the brain. They are responsible for the majority of fast excitatory synaptic transmission, and their overactivation is potently excitotoxic. Recent findings have implicated AMPARs in synapse formation and stabilization, and regulation of functional AMPARs is the principal mechanism underlying synaptic plasticity. Changes in AMPAR activity have been described in the pathology of numerous diseases, such as Alzheimer’s disease, stroke, and epilepsy. Unsurprisingly, the developmental and activity-dependent changes in the functional synaptic expression of these receptors are under tight cellular regulation. The molecular and cellular mechanisms that control the postsynaptic insertion, arrangement, and lifetime of surface-expressed AMPARs are the subject of intense and widespread investigation. For example, there has been an explosion of information about proteins that interact with AMPAR subunits, and these interactors are beginning to provide real insight into the molecular and cellular mechanisms underlying the cell biology of AMPARs. As a result, there has been considerable progress in this field, and the aim of this review is to provide an account of the current state of knowledge.
It is not fully understood how NMDAR-dependent LTD causes Ca(2+)-dependent endocytosis of AMPARs. Here we show that the neuronal Ca(2+) sensor hippocalcin binds the beta2-adaptin subunit of the AP2 adaptor complex and that along with GluR2 these coimmunoprecipitate in a Ca(2+)-sensitive manner. Infusion of a truncated mutant of hippocalcin (HIP(2-72)) that lacks the Ca(2+) binding domains prevents synaptically evoked LTD but has no effect on LTP. These data indicate that the AP2-hippocalcin complex acts as a Ca(2+) sensor that couples NMDAR-dependent activation to regulated endocytosis of AMPARs during LTD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.