Obesity and type 2 diabetes are characterized by altered gut microbiota, inflammation, and gut barrier disruption. Microbial composition and the mechanisms of interaction with the host that affect gut barrier function during obesity and type 2 diabetes have not been elucidated. We recently isolated Akkermansia muciniphila, which is a mucin-degrading bacterium that resides in the mucus layer. The presence of this bacterium inversely correlates with body weight in rodents and humans. However, the precise physiological roles played by this bacterium during obesity and metabolic disorders are unknown. This study demonstrated that the abundance of A. muciniphila decreased in obese and type 2 diabetic mice. We also observed that prebiotic feeding normalized A. muciniphila abundance, which correlated with an improved metabolic profile. In addition, we demonstrated that A. muciniphila treatment reversed high-fat diet-induced metabolic disorders, including fat-mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin resistance. A. muciniphila administration increased the intestinal levels of endocannabinoids that control inflammation, the gut barrier, and gut peptide secretion. Finally, we demonstrated that all these effects required viable A. muciniphila because treatment with heat-killed cells did not improve the metabolic profile or the mucus layer thickness. In summary, this study provides substantial insight into the intricate mechanisms of bacterial (i.e., A. muciniphila) regulation of the cross-talk between the host and gut microbiota. These results also provide a rationale for the development of a treatment that uses this human mucus colonizer for the prevention or treatment of obesity and its associated metabolic disorders.RegIIIγ | LPS | gut permeability | Lactobacillus plantarum | antimicrobial peptides G ut microbiota were once characterized as bystanders in the intestinal tract, but their active role in intestinal physiology is now widely investigated. In particular, the mutualism that exists between gut microbiota and the host has received much attention. Obesity and type 2 diabetes are characterized by altered gut microbiota (1), inflammation (2), and gut barrier disruption (3-5). We recently demonstrated an association of obesity and type 2 diabetes with increased gut permeability, which induced metabolic endotoxemia and metabolic inflammation (3-5). Unequivocal evidence demonstrates that gut microbiota influence whole-body metabolism (1, 6) by affecting the energy balance (6), gut permeability (4, 5), serum lipopolysaccharides [i.e., metabolic endotoxemia (7)], and metabolic inflammation (3-5, 7) that are associated with obesity and associated disorders. However, the microbial composition and the exact mechanisms of interaction between these two partners that affect host-gut barrier function and metabolism remain unclear.The intestinal epithelium is the interface for the interaction between gut microbiota and host tissues (8). This barrier is enhanced by the presence of a mucus layer an...
Obesity and type 2 diabetes are associated with low-grade inflammation and specific 34 changes in gut microbiota composition [1][2][3][4][5][6][7] . We previously demonstrated that administration 35 of Akkermansia muciniphila prevents the development of obesity and associated 36 complications 8 . However, its mechanisms of action remain unclear, whilst the sensitivity of 37 A. muciniphila to oxygen and the presence of animal-derived compounds in its growth 38 medium currently limit the development of translational approaches for human medicine 9 . 39Here we addressed these issues by showing that A. muciniphila retains its efficacy when Akkermansia muciniphila is one of the most abundant members of the human gut 53 microbiota, representing between 1 and 5% of our intestinal microbes 10,11 to improve glucose intolerance and insulin resistance regardless of the growth medium used and 71 independently of food intake ( Fig. 1a-g). 72 We previously showed that autoclaving A. muciniphila abolished its beneficial effects 8 . (Fig. 1a-c and Supplemental Fig. 1a-c). In both sets of 81 experiments, we found that mice treated with pasteurized A. muciniphila displayed a much lower 82 glucose intolerance and insulin concentration when compared to the HFD group, resulting in a 83 lower insulin resistance (IR) index (Fig. 1d-g and Supplemental Fig. 1d-g). Treatment with 84 pasteurized A. muciniphila also led to greater goblet cell density in the ileum when compared to 85 ND-fed mice (Fig. 1h), suggesting a higher mucus production, while normalizing the mean 86 adipocyte diameter (Fig. 2a-b) and significantly lowering plasma leptin when compared to HFD-87 fed mice (Fig. 2c). These effects were not observed in mice treated with live A. muciniphila. A 88 similar trend could be observed for plasma resistin (Supplemental Fig. 1h), thereby suggesting 89 improved insulin sensitivity, while plasma adiponectin remained unaffected in all conditions 90 (Supplemental Fig. 1i). We found that mice treated with pasteurized A. muciniphila had a higher 91 fecal caloric content when compared to all other groups (Fig. 2d), suggesting a lower energy (Fig. 2e-g). This resulted in a normalization of the HFD-induced shift of 37% with the 104 pasteurized bacterium, and 17% with the live bacterium ( Fig. 2f). 105By comparing the metabolic profiles of the different groups, we found that the shift 106 induced by pasteurized A. muciniphila was mainly associated with trimethylamine (TMA) and TMA to TMAO, a metabolite associated with atherosclerosis 19,20 . While exposure to a HFD led 114 to a two-fold higher Fmo3 expression when compared to ND-fed mice, treatment with 115 pasteurized A. muciniphila reversed this effect (Fig. 2j) Fmo3 expression were not associated with a modification of plasma TMA and TMAO, as all 121 HFD-fed group displayed similar concentrations for both metabolites (Fig. 2k,l) (Fig. 3a), but not cells expressing TLR5, TLR9 or the NOD2 receptor (Fig. 3b-131 d). 132Genomic and proteomic analyses of A. muciniphila identified p...
The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease.
ObjectivePneumonia accounts for more deaths than any other infectious disease worldwide. The intestinal microbiota supports local mucosal immunity and is increasingly recognised as an important modulator of the systemic immune system. The precise role of the gut microbiota in bacterial pneumonia, however, is unknown. Here, we investigate the function of the gut microbiota in the host defence against Streptococcus pneumoniae infections.DesignWe depleted the gut microbiota in C57BL/6 mice and subsequently infected them intranasally with S. pneumoniae. We then performed survival and faecal microbiota transplantation (FMT) experiments and measured parameters of inflammation and alveolar macrophage whole-genome responses.ResultsWe found that the gut microbiota protects the host during pneumococcal pneumonia, as reflected by increased bacterial dissemination, inflammation, organ damage and mortality in microbiota-depleted mice compared with controls. FMT in gut microbiota-depleted mice led to a normalisation of pulmonary bacterial counts and tumour necrosis factor-α and interleukin-10 levels 6 h after pneumococcal infection. Whole-genome mapping of alveolar macrophages showed upregulation of metabolic pathways in the absence of a healthy gut microbiota. This upregulation correlated with an altered cellular responsiveness, reflected by a reduced responsiveness to lipopolysaccharide and lipoteichoic acid. Compared with controls, alveolar macrophages derived from gut microbiota-depleted mice showed a diminished capacity to phagocytose S. pneumoniae.ConclusionsThis study identifies the intestinal microbiota as a protective mediator during pneumococcal pneumonia. The gut microbiota enhances primary alveolar macrophage function. Novel therapeutic strategies could exploit the gut–lung axis in bacterial infections.
Akkermansia muciniphila is an intestinal bacterium that was isolated a decade ago from a human fecal sample. Its specialization in mucin degradation makes it a key organism at the mucosal interface between the lumen and host cells. Although it was isolated quite recently, it has rapidly raised significant interest as A. muciniphila is the only cultivated intestinal representative of the Verrucomicrobia, one of the few phyla in the human gut that can be easily detected in phylogenetic and metagenome analyses. There has also been a growing interest in A. muciniphila, due to its association with health in animals and humans. Notably, reduced levels of A. muciniphila have been observed in patients with inflammatory bowel diseases (mainly ulcerative colitis) and metabolic disorders, which suggests it may have potential anti-inflammatory properties. The aims of this review are to summarize the existing data on the intestinal distribution of A. muciniphila in health and disease, to provide insight into its ecology and its role in founding microbial networks at the mucosal interface, as well as to discuss recent research on its role in regulating host functions that are disturbed in various diseases, with a specific focus on metabolic disorders in both animals and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.