Xpert MTB/RIF provides a rapid, useful, and accurate test to diagnose mediastinal nodal TB in intermediate-incidence settings. The additional use of TBNA cytology further enhances the sensitivity of Xpert. This combination can facilitate rapid risk assessment and prompt TB treatment.
Cerebellar Ataxia, Neuropathy and Vestibular Areflexia Syndrome (CANVAS) is an autosomal recessive neurodegenerative disease, usually caused by biallelic AAGGG repeat expansions in RFC1. In this study, we leveraged whole genome sequencing (WGS) data from nearly 10,000 individuals recruited within the Genomics England sequencing project to investigate the normal and pathogenic variation of the RFC1 repeat.
We identified three novel repeat motifs, AGGGC (n=6 from 5 families), AAGGC (n=2 from 1 family), AGAGG (n=1), associated with CANVAS in the homozygous or compound heterozygous state with the common pathogenic AAGGG expansion. While AAAAG, AAAGGG and AAGAG expansions appear to be benign, here we show a pathogenic role for large AAAGG repeat configuration expansions (n=5). Long read sequencing was used to fully characterise the entire repeat sequence and revealed a pure AGGGC expansion in six patients, whereas the other patients presented complex motifs with AAGGG or AAAGG interruptions. All pathogenic motifs seem to have arisen from a common haplotype and are predicted to form highly stable G quadruplexes, which have been previously demonstrated to affect gene transcription in other conditions.
The assessment of these novel configurations is warranted in CANVAS patients with negative or inconclusive genetic testing. Particular attention should be paid to carriers of compound AAGGG/AAAGG expansions, since the AAAGG motif when very large (>500 repeats) or in the presence of AAGGG interruptions.
Accurate sizing and full sequencing of the satellite repeat with long read is recommended in clinically selected cases, in order to achieve an accurate molecular diagnosis and counsel patients and their families.
Iron, copper, and zinc are lower in colorectal liver metastases than normal liver. An investigation into the pathways underlying these differences may provide a new understanding of cancer development and possible novel therapeutic targets.
Massive hepatic necrosis (MHN) is a condition that offers an opportunity to study the remarkable ability of the liver to become repopulated with hepatocytes. A maximal regenerative stimulus is expected in cases of MHN (Roskams et al. APMIS Suppl 1991;23:32-39). Sequential chronological observations, after a severe degree of liver cell loss, permit study of the human equivalent of the situation in animal models in which circulating and bone marrow-derived stem and liver progenitor cells are recruited to the hepatopoietic process. To date, the bone marrow and circulating precursors have not been identified morphologically in human material. We present data that suggest that the circulating liver progenitor could have a lymphoblastoid morphological appearance. Similar cells are seen among the cellular infiltrate of MHN. We have found that combinations of markers, such as CD117/CD133 positive CD45/tryptase negative are useful to isolate these cells using cell-sorting technology. This may facilitate their expansion in vitro and the development of their use for therapeutic purposes. In MHN, the residual portal tracts and ductular reaction with the associated lymphoid infiltrate (some of which are probably liver cell progenitors derived from the circulation) constitute the fundamental regenerative community unit in which hepatopoiesis takes place. Defining the hepatopoietic process is hindered by the lack of morphological transitional forms in the period between the progenitors within the circulation and when they assume recognizable hepatocytic form as "metaplastic" hepatocytes associated with the ductular reaction. By achieving a better comprehension of these processes of liver cell restoration, we will be better placed to accelerate liver recovery in MHN, for example by the administration of granulocyte colony stimulating factor (GCSF). Thus, more patients will be able to restore their own livers and avoid liver transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.