This article presents our research towards developing novel and fundamental methodologies for data representation using spike-timing-dependent encoding. Time encoding efficiently maps a signal's amplitude information into a spike time sequence that represents the input data and offers perfect recovery for band-limited stimuli. In this article, we pattern the neural activities across multiple timescales and encode the sensory information using time-dependent temporal scales. The spike encoding methodologies for autonomous classification of time-series signatures are explored using near-chaotic reservoir computing. The proposed spiking neuron is compact, low power, and robust. A hardware implementation of these results is expected to produce an agile hardware implementation of time encoding as a signal conditioner for dynamical neural processor designs.
Reservoir computing is an emerging methodology for neuromorphic computing that is especially well-suited for hardware implementations in size, weight, and power (SWaP) constrained environments. This work proposes a novel hardware implementation of a reservoir computer using a planar nanomagnet array. A small nanomagnet reservoir is demonstrated via micromagnetic simulations to be able to identify simple waveforms with 100% accuracy. Planar nanomagnet reservoirs are a promising new solution to the growing need for dedicated neuromorphic hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.