The serum amyloid A (SAA) family comprises a number of differentially expressed apolipoproteins, acute-phase SAAs (A-SAAs) and constitutive SAAs (C-SAAs). A-SAAs are major acute-phase reactants, the in vivo concentrations of which increase by as much as 1000-fold during inflammation. A-SAA mRNAs or proteins have been identified in all vertebrates investigated to date and are highly conserved. In contrast, C-SAAs are induced minimally, if at all, during the acute-phase response and have only been found in human and mouse. Although the liver is the primary site of synthesis of both A-SAA and C-SAA, extrahepatic production has been reported for most family members in most of the mammalian species studied. In vitro, the dramatic induction of A-SAA mRNA in response to pro-inflammatory stimuli is due largely to the synergistic effects of cytokine signaling pathways, principally those of the interleukin-1 and interleukin-6 type cytokines. This induction can be enhanced by glucocorticoids. Studies of the A-SAA promoters in several mammalian species have identified a range of transcription factors that are variously involved in defining both cytokine responsiveness and cell specificity. These include NF-kB, C/EBP, YY1, AP-2, SAF and Sp1. A-SAA is also post-transcriptionally regulated. Although the precise role of A-SAA in host defense during inflammation has not been defined, many potential clinically important functions have been proposed for individual SAA family members. These include involvement in lipid metabolism/transport, induction of extracellular-matrix-degrading enzymes, and chemotactic recruitment of inflammatory cells to sites of inflammation. A-SAA is potentially involved in the pathogenesis of several chronic inflammatory diseases: it is the precursor of the amyloid A protein deposited in amyloid A amyloidosis, and it has also been implicated in the pathogenesis of atheroscelerosis and rheumatoid arthritis.
BACKGROUNDMultiple myeloma cells uniformly overexpress CD38. We studied daratumumab, a CD38-targeting, human IgG1κ monoclonal antibody, in a phase 1-2 trial involving patients with relapsed myeloma or relapsed myeloma that was refractory to two or more prior lines of therapy. METHODSIn part 1, the dose-escalation phase, we administered daratumumab at doses of 0.005 to 24 mg per kilogram of body weight. In part 2, the dose-expansion phase, 30 patients received 8 mg per kilogram of daratumumab and 42 received 16 mg per kilogram, administered once weekly (8 doses), twice monthly (8 doses), and monthly for up to 24 months. End points included safety, efficacy, and pharmacokinetics. RESULTSNo maximum tolerated dose was identified in part 1. In part 2, the median time since diagnosis was 5.7 years. Patients had received a median of four prior treatments; 79% of the patients had disease that was refractory to the last therapy received (64% had disease refractory to proteasome inhibitors and immunomodulatory drugs and 64% had disease refractory to bortezomib and lenalidomide), and 76% had received autologous stem-cell transplants. Infusion-related reactions in part 2 were mild (71% of patients had an event of any grade, and 1% had an event of grade 3), with no dose-dependent adverse events. The most common adverse events of grade 3 or 4 (in ≥5% of patients) were pneumonia and thrombocytopenia. The overall response rate was 36% in the cohort that received 16 mg per kilogram (15 patients had a partial response or better, including 2 with a complete response and 2 with a very good partial response) and 10% in the cohort that received 8 mg per kilogram (3 had a partial response). In the cohort that received 16 mg per kilogram, the median progression-free survival was 5.6 months (95% confidence interval [CI], 4.2 to 8.1), and 65% (95% CI, 28 to 86) of the patients who had a response did not have progression at 12 months.
BACKGROUNDLenalidomide plus dexamethasone is a standard treatment for patients with newly diagnosed multiple myeloma who are ineligible for autologous stem-cell transplantation. We sought to determine whether the addition of daratumumab would significantly reduce the risk of disease progression or death in this population. METHODSWe randomly assigned 737 patients with newly diagnosed multiple myeloma who were ineligible for autologous stem-cell transplantation to receive daratumumab plus lenalidomide and dexamethasone (daratumumab group) or lenalidomide and dexamethasone alone (control group). Treatment was to continue until the occurrence of disease progression or unacceptable side effects. The primary end point was progression-free survival. RESULTSAt a median follow-up of 28.0 months, disease progression or death had occurred in 240 patients (97 of 368 patients [26.4%] in the daratumumab group and 143 of 369 patients [38.8%] in the control group). The estimated percentage of patients who were alive without disease progression at 30 months was 70.6% (95% confidence interval [CI], 65.0 to 75.4) in the daratumumab group and 55.6% (95% CI, 49.5 to 61.3) in the control group (hazard ratio for disease progression or death, 0.56; 95% CI, 0.43 to 0.73; P<0.001). The percentage of patients with a complete response or better was 47.6% in the daratumumab group and 24.9% in the control group (P<0.001). A total of 24.2% of the patients in the daratumumab group, as compared with 7.3% of the patients in the control group, had results below the threshold for minimal residual disease (1 tumor cell per 10 5 white cells) (P<0.001). The most common adverse events of grade 3 or 4 were neutropenia (50.0% in the daratumumab group vs. 35.3% in the control group), anemia (11.8% vs. 19.7%), lymphopenia (15.1% vs. 10.7%), and pneumonia (13.7% vs. 7.9%). CONCLUSIONSAmong patients with newly diagnosed multiple myeloma who were ineligible for autologous stem-cell transplantation, the risk of disease progression or death was significantly lower among those who received daratumumab plus lenalidomide and dexamethasone than among those who received lenalidomide and dexamethasone alone. A higher incidence of neutropenia and pneumonia was observed in the daratumumab group. (Funded by Janssen Research and Development; MAIA ClinicalTrials.gov number, NCT02252172.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.