Abstract:The main parameters evaluated with a conventional thermal response test (TRT) are the subsurface thermal conductivity surrounding the borehole and the effective borehole thermal resistance, when averaging the inlet and outlet temperature of a ground heat exchanger with the arithmetic mean. This effective resistance depends on two resistances: the 2D borehole resistance (R b ) and the 2D internal resistance (R a ) which is associated to the short-circuit effect between pipes in the borehole. This paper presents a field method to evaluate these two components separately. Two approaches are proposed. In the first case, the temperature at the bottom of the borehole is measured at the same time as the inlet and outlet temperatures as done in a conventional TRT. In the second case, different flow rates are used during the experiment to infer the internal resistance. Both approaches assumed a predefined temperature profile inside the borehole. The methods were applied to real experimental tests and compared with numerical simulations. Interesting results were found by comparison with theoretical resistances calculated with the multipole method. The motivation for this work is evidenced by analyzing the impact of the internal resistance on a typical geothermal system design. It is shown to be important to know both resistance components to predict the variation of the effective resistance when the flow rate and the height of the boreholes are changed during the design process.
In a conventional thermal response test (TRT), the main parameter evaluated is the bulk subsurface thermal conductivity surrounding the borehole. It is
Undisturbed ground temperature (UGT), thermal conductivity (TC) and heat capacity (HC) are essential parameters to design geothermal heat pumps and underground thermal energy storage systems, particularly borehole heat exchangers (BHE). However, field methods to assess the thermal state and properties of the subsurface are costly and time consuming. Moreover, HC is often not evaluated in situ but arbitrarily selected from literature considering the geological materials intercepted by boreholes. This work proposes an original empirical approach to reproduce a UGT profile and estimate in situ thermal diffusivity (TD) and HC in the scope of conventional thermal response tests (TRTs). Empirical equations were developed to reproduce a UGT profile measured along a BHE. Experimental coefficients are found with a non-linear least square solver optimization and used to calculate the damping depth, TD and HC. The suggested heat tracing method was verified and validated against other field methods demonstrating to be fast and reliable. The novelty of this new empirical approach relies on the use of a single temperature profile providing a simple way to better assess subsurface thermal properties.
Undisturbed ground temperature (UGT), thermal conductivity (TC) and heat capacity (HC) are essential parameters for the design of borehole heat exchanger (BHE) and borehole thermal energy storage systems. However, field methods to assess the thermal state and properties of the sub-surface are costly and time consuming. Moreover, HC is often not evaluated but arbitrarily selected from literature considering the geological materials intercepted by boreholes. Therefore, this work aims at proposing a field heat tracing method to infer the thermal diffusivity (TD) and HC with assumption of natural transient heat conduction in the subsurface. Empirical equations were developed to reproduce a UGT profile measured along a BHE. Experimental coefficients are found with a non-linear least square solver optimization and used to calculate the damping depth and TD. Subsequently, the TD is used to evaluate HC considering TC obtained from a thermal response test (TRT). Results from this proposed heat tracing method were verified and validated against a set of TRT results and oscillatory TRT analysis using a field dual probe concept to infer HC. The example here described highlights the advantages and novelty of this fast and simple field method relying only on a single UGT profile measured before a TRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.