A novel hydrogel composite based on gellan gum and graphene oxide (GG/GO) was synthesized, characterized and tested for sorption capacity in this work. The microstructural, thermogravimetric and spectroscopic analysis confirmed the formation of the GG/GO composite. Comparative batch sorption experiments revealed a sorption capacity of the GG/GO composite for Zn (II) ions of approximately 2.3 higher than that of pure GG. The GG/GO composite exhibits a maximum sorption capacity of 272.57 mg/g at a pH of Zn (II) initial solution of 6. Generally, the sorption capacity of the sorbents is approximately 1.5 higher in slightly acidic conditions (pH 6) comparative with that for strong acidic conditions (pH 3). The sorption isotherms revealed that the sorption followed a monolayer/homogenous behavior. The sorption kinetic data were well fitted by the pseudo-second-order kinetic model, and were consistent with those derived from sorption isotherms. The intraparticle diffusion was considered to be the rate-determining step. Two main sorption mechanisms for Zn (II) were identified namely, ion exchange at low pH values, and both ion exchange and chemisorption in weekly acidic conditions.
In this paper we present a comparative study on tensile failure behavior of polymer stiffened composite shell structures, using infrared thermography and finite element analysis through the ABAQUS 6.13 program. The establishment of the distortion of some rectangular shaped specimens was followed. In these specimens a hole with a diameter of 15 mm was applied centrally. By means of infrared thermography, was studied experimentally the variation of the deformations over time, depending on the stress force and the evolution of the thermal field in the crack area. Simulation models of failure behavior have been performed, which have been validated by experimental results.
Considering thermal environment aspects have a major impact not only on occupational health and safety (OH&S) performance but also on the productivity and satisfaction of the workers, the aim of the case study was to assess the thermal comfort of a group of 33 workers in an automotive industry company, starting with collecting data about the thermal environment from different workplaces, continuing with the analytical determination and interpretation of thermal comfort using the calculation of the Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) indices, according to provisions of the standard ISO 7730:2005, and comparing the results with the subjective perception of the workers revealed by applying individual questionnaires. The results of the study represent an important input element for establishing the preventive and protective measures for the analysed workplaces in correlation with the measures addressing other specific risks and, also, could serve as a model for extending and applying to other similar workplaces in future studies. Moreover, the mathematical model and the software instrument used for this study case could be used in further similar studies on larger groups of workers and in any industrial domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.