Predicting time series is a crucial task for organizations, since decisions are often based on uncertain information. Many forecasting models are designed from a generic statistical point of view. However, each real-world application requires domain-specific adaptations to obtain high-quality results. All such specifics are summarized by the term of context. In contrast to current approaches, we want to integrate context as the primary driver in the forecasting process. We introduce context-driven time series forecasting focusing on two exemplary domains: renewable energy and sparse sales data. In view of this, we discuss the challenge of context integration in the individual process steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.