Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed mutagenesis and by trapping the radiolabeled cocaine analog [ 3 H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn 2+ -binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive inhibition of dopamine transport by cocaine.Correspondence should be addressed to U.G. (E-mail: gether@sund.ku.dk). Note: Supplementary information is available on the Nature Neuroscience website. AUTHOR CONTRIBUTIONST.B. designed and performed the computational experiments, analyzed the data and wrote the manuscript draft together with C.J.L. J.K. generated mutants, carried out pharmacological analyses and contributed to the data analysis. M.L.B. and K.R. generated mutants and carried out pharmacological analyses. L.S. contributed to the computational experiments and manuscript refinement. L.G. participated in the design and performance of the computational experiments. A.H.N. contributed with ideas, benztropine analogues and provided expertise in the pharmacology and medicinal chemistry of DAT inhibitors. J.A.J. contributed with ideas and to the design of experiments and writing of the manuscript. H.W. directed the design and performance of the modeling and computational experiments, participated in data analysis and contributed to writing the manuscript. U.G. supervised the project together with C.J.L., designed experiments, analyzed data and wrote the final manuscript. C.J.L. supervised the project together with U.G., designed experiments, generated mutants, performed pharmacological experiments, analyzed data and wrote the manuscript draft together with T.B.Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/ NIH Public Access Author ManuscriptNat Neurosci. Author manuscript; available in PMC 2009 July 1. Published in final edited form as:Nat Neurosci. 2008 July ; 11(7): 780-789. doi:10.1038/nn.2146. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptCocaine is an alkaloid derived from the Peruvian Erythroxylon coca plant and has been used as a stimulant for centuries 1 . Today, cocaine is widely abused, especially in the western hemisphere, causing major socioeconomic burdens through increased medical expenses, lost earnings and increased crime 2 . Nonetheless, the molecular mechanisms underlying cocaine's pharmacology and abuse ...
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces displayed by native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each of which is built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family display favorable behavior relative to conventional detergents, as tested on multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.
Background (±)-Modafinil has piqued interest as a treatment for ADHD and stimulant dependence. The R-enantiomer of modafinil may have unique pharmacological properties that should be further investigated. Methods (±)-Modafinil and its R-(−)- and S-(+)-enantiomers were synthesized and tested for inhibition of [3H]DA uptake and [3H]WIN 35,428 binding in hDAT WT and mutants with altered conformational equilibria. Data were compared to cocaine and the atypical dopamine uptake inhibitor, JHW 007. R- and S-modafinil were also evaluated in microdialysis studies in the mouse NAc shell and in a cocaine discrimination procedure. Results (±)-, R- and S-Modafinil bind to the DAT and inhibit dopamine uptake less potently than cocaine, with R-modafinil having ~3-fold higher affinity than its S-enantiomer. Molecular docking studies revealed subtle differences in binding modes for the enantiomers. R-modafinil was significantly less potent in the DAT Y156F mutant compared to wild-type DAT, whereas S-modafinil was affected less. Studies with the Y335A DAT mutant showed that the R- and S-enantiomers tolerated the inward facing conformation better than cocaine, which was further supported by MTSET reactivity on the DAT E2C I159C. Microdialysis studies demonstrated that both R- and S-modafinil produced increases in extracellular DA concentrations in the NAc shell less efficaciously than cocaine, and with a longer duration of action. Both enantiomers fully substituted in mice trained to discriminate cocaine from saline. Conclusions R-modafinil displays an in vitro profile different from cocaine. Future trials with R-modafinil as a substitute therapy with the potential benefit of cognitive enhancement for psychostimulant addiction are warranted.
Cocaine exerts its stimulatory effect by inhibiting the dopamine transporter (DAT). However, novel benztropine-and rimcazolebased inhibitors show reduced stimulant effects compared with cocaine, despite higher affinity and selectivity for DAT. To investigate possible mechanisms, we compared the subjective effects of different inhibitors with their molecular mode of interaction at the DAT. We determined how different inhibitors affected accessibility of the sulfhydryl-reactive reagent [2-(trimethylammonium)ethyl]-methanethiosulfonate to an inserted cysteine (I159C), which is accessible when the extracellular transporter gate is open but inaccessible when it is closed. The data indicated that cocaine analogs bind an open conformation, whereas benztropine and rimcazole analogs bind a closed conformation. Next, we investigated the changes in inhibition potency of [ 3 H]dopamine uptake of the compounds at a mutant DAT (Y335A) characterized by a global change in the conformational equilibrium. We observed a close relationship between the decrease in potencies of inhibitors at this mutant and cocaine-like responding in rats trained to discriminate cocaine from saline injections. Our data suggest that chemically different DAT inhibitors stabilize distinct transporter conformations and that this in turn affects the cocaine-like subjective effects of these compounds in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.