Due to high corrosion resistance and low density titanium aluminides show a great potential as material for structural applications in the aerospace and automotive industry. However the high actual production costs for semi-finished products slow down a break through to mass production of TiAl. Current research projects at IME, Aachen funded by AIF "Otto von Guericke" and BMBF aim on cost reduced production methods of TiAl and on the minimisation of downgrading TiAl scrap. This article presents firstly the state of the art of TiAl production by vacuum arc (re)melting (VAR) or induction skull melting (ISM). A comparison of new process routes under special consideration of recycling issues will follow. Innovative processing and equipment concepts are shown by intelligent combination of well known vacuum melting and remelting processes such as vacuum induction melting, specialized using ceramic lining and deoxidisation with e.g. electro slag re-melting (ESR). For each process step and accordingly equipment the metallurgical opportunities are pointed out and the way to make use of them within the process route is described. Requirements on input material and final metal quality addicted to the processing route and refining techniques with their adjustment in respect to TiAl are mentioned. Selected results of laboratory and pilot scale experiments done at IME in Aachen and equipment needs therefore are shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.