A fast and extensive build‐up of green hydrogen production is a crucial element for the global energy transition. The availability of low‐cost renewable energy at high operating hours of the electrolyzer is a central criterion in today's choice of location for green hydrogen production. It is analyzed how decreasing electrolyzer costs that are expected by many may influence this choice. The energy system optimization framework ESTRAM is used to find the optimum configuration of wind turbine, photovoltaic (PV), and electrolyzer capacity for covering a given hydrogen demand by locally produced green hydrogen in different European locations. It is found that PV is part of the cost‐optimal solution in 96% of 1372 statistical regions in Europe. Decreasing electrolyzer costs are favoring the utilization of PV in wind–solar hybrid plants. At low electrolyzer costs, pure solar hydrogen outperforms the hybrid variant in many places if hydrogen storage is available, even with few full operating hours per year. At the same time, production costs are converging significantly. The article adds a new perspective to the discussion, as it is systematically shown how further technology development may lead to a shift in locational advantages for green hydrogen production, what should be considered to avoid stranded assets when building infrastructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.