We report on electro-optic modulation using a Lithium Niobate (LN) Photonic Crystal (PC) cavity structure. The compact device (6 μm in length) consists of a 2D photonic crystal cavity made on an Annealed Proton Exchange (APE) LN waveguide with vertical deposited electrodes. Experimental results show a tunability of 0.6 nm/V. This compact design opens a way towards micro and nano-scale tunable photonic devices with low driving electrical power.
In this paper, temperature variations are detected thanks to an enhanced nano-optical pyroelectric sensor. Sensing is obtained with the pyroelectric effect of lithium niobate (LN) in which, a suitable air-membrane photonic crystal cavity has been fabricated. The wavelength position of the cavity mode is tuned 11.5 nm for a temperature variation of only 32 °C. These results agree quite well with 3D-FDTD simulations that predict tunability of 12.5 nm for 32 °C. This photonic crystal temperature sensor shows a sensitivity of 0.359 nm/°C for an active length of only ~5.2 μm.
We report on low-loss vertical tapers for efficient coupling between confined LiNbO3 optical ridge waveguides and Single Mode Fibers. 3D-Pseudo-Spectral-Time-Domain calculations and Optical-Coherence-Tomography-based methods are advantageously used for the numerical and experimental study of the tapers. The tapered-section is done simultaneously with the ridge waveguide by means of a circular precision dicing saw, so that the fabrication procedure is achieved in only two steps. The total insertion losses through a 1.6 cm long ridge waveguide are measured to be improved by 3 dB in presence of the taper. These tapered-ridge waveguides open the way to the low-cost production of low-loss phase modulators or resonators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.