Increasing evidence suggests that deep brain stimulation (DBS), which is currently being used as a therapy for neurological diseases, may be effective in the treatment of psychiatric disorders as well. Here, we examined the influence of DBS of the nucleus accumbens shell on cocaine priming-induced reinstatement of drug seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.25 mg, i.v.) 2 h daily for 21 d and then cocaine-seeking behavior was extinguished by replacing cocaine with saline. During the reinstatement phase, DBS was administered bilaterally to the nucleus accumbens shell through bipolar stainless steel electrodes. Biphasic symmetrical pulses were delivered at a frequency of 160 Hz and a current intensity of 150 A. DBS began immediately after a priming injection of cocaine (0, 5, 10, or 20 mg/kg, i.p.) and continued throughout each 2 h reinstatement session. Results indicated that only the higher doses of cocaine (10 and 20 mg/kg) produced robust and reliable reinstatement of cocaine seeking. DBS of the nucleus accumbens shell significantly attenuated the reinstatement of drug seeking precipitated by these higher cocaine doses. Additional experiments indicated that this DBS effect was both anatomically and reinforcer specific. Thus, DBS of the dorsal striatum had no influence on cocaine reinstatement and DBS of the accumbens shell did not affect the reinstatement of food seeking. Together, these results suggest that DBS of the nucleus accumbens shell may be a potential therapeutic option in the treatment of severe cocaine addiction.
The use of deception threatens both participant safety and the integrity of research findings. Deception may be fueled in part by undue inducements, overly restrictive criteria for entry, and increased demand for healthy controls. Screening measures designed to detect deception among study subjects would aid in both protecting subjects and ensuring the quality of research findings.
Recent studies have shown that deep brain stimulation (DBS) of the nucleus accumbens (NAcc) has an inhibitory effect on drug-seeking behaviors including reinstatement responding for cocaine. The objective of the present study was to expand on these findings by assessing the effects of DBS on behaviors related to alcohol consumption. The specific aim of this study was to determine whether DBS delivered to either the shell or core of the NAcc would reduce ETOH intake in rats using a twobottle choice limited access procedure. Long Evans rats were induced to drink a 10% ethanol solution using a saccharin fading procedure. Bipolar electrodes were implanted bilaterally into either the core or shell of the NAcc. During testing animals received DBS 5 minutes prior to and during a 30-minute test session in which both ETOH and water bottles were accessible. Current was delivered at amplitudes ranging between 0 to 150 uA. ETOH consumption was significantly reduced from baseline levels at the 150 uA current for both shell and core electrode placements. A significant current effect was not found for water consumption for either site. These results provide evidence that DBS delivered either to the nucleus accumbens core or shell subregions can significantly reduce ethanol intake in the rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.