The automotive industry is rapidly developing new in-vehicle technologies that can provide drivers with information to aid awareness and promote quicker response times. Particularly, vehicles with augmented reality (AR) graphics delivered via head-up displays (HUDs) are nearing mainstream commercial feasibility and will be widely implemented over the next decade. Though AR graphics have been shown to provide tangible benefits to drivers in scenarios like forward collision warnings and navigation, they also create many new perceptual and sensory issues for drivers. For some time now, designers have focused on increasing the realism and quality of virtual graphics delivered via HUDs, and recently have begun testing more advanced 3D HUD systems that deliver volumetric spatial information to drivers. However, the realization of volumetric graphics adds further complexity to the design and delivery of AR cues, and moreover, parameters in this new design space must be clearly and operationally defined and explored. In this work, we present two user studies that examine how driver performance and visual attention are affected when using fixed and animated AR HUD interface design approaches in driving scenarios that require top-down and bottom-up cognitive processing. Results demonstrate that animated design approaches can produce some driving gains (e.g., in goal-directed navigation tasks) but often come at the cost of response time and distance. Our discussion yields AR HUD design recommendations and challenges some of the existing assumptions of world-fixed conformal graphic approaches to design.
Active safety systems have the potential to reduce the risk to pedestrians by warning the driver and/or taking evasive action to reduce the effects of or avoid a collision. However, current systems are limited in the range of scenarios they can address using primary control interventions, and this arguably places more emphasis in some situations on warning the driver so that they can take appropriate action in response to pedestrian hazards. In a counterbalanced experimental design, we varied urgency ('when') based on the time-to-collision (TTC) at which the warning was presented (with associated false-positive alarms, but no false negatives, or 'misses'), and modality ('how') by presenting warnings using audio-only and audio combined with visual alerts presented on a HUD. Results from 24 experienced drivers, who negotiated an urban scenario during twelve 6.0-minute drives in a medium-fidelity driving simulator, showed that all warnings were generally rated 'positively' (using recognised subjective 'acceptance' scales), although acceptance was lower when warnings were delivered at the shortest (2.0s) TTC. In addition, drivers indicated higher confidence in combined audio and visual warnings in all situations. Performance (based on safety margins associated with critical events) varied significantly between warning onset times, with drivers first fixating their gaze on the hazard, taking their foot off the accelerator, applying their foot on the brake, and ultimately bringing the car to a stop further from the pedestrian when warnings were presented at the longest (5.0s) TTC. In addition, drivers applied the brake further from the pedestrian when combined audio and HUD warnings were provided (compared to audio-only), but only at 5.0s TTC. Overall, the study indicates a greater margin of safety associated with the provision of earlier warnings, with no apparent detriment to acceptance, despite relatively high false alarm rates at longer TTCs. Also, that drivers feel more confident with a warning system present, especially when it incorporates auditory and visual elements, even though the visual cue does not necessarily improve hazard localisation or driving performance beyond the advantages offered by auditory alerts alone. Findings are discussed in the context of the design, evaluation and acceptance of active safety systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.