Association between attention-deficit hyperactivity disorder (ADHD) and the 10-repeat allele of the dopamine transporter gene (DAT1) has been reported in independent clinical samples using a categorical clinical definition of ADHD. The present study adopts a quantitative trait loci (QTL) approach to examine the association between DAT1 and a continuous measure of ADHD behaviours in a general-population sample, as well as to explore whether there is an independent association between DAT1 and performance on neuropsychological tests of attention, response inhibition, and working memory. From an epidemiological sample of 872 boys aged 6-11 years, we recruited 58 boys scoring above the 90th percentile for teacher reported ADHD symptoms (SWAN ADHD scale) and 68 boys scoring below 10th percentile for genotyping and neuropsychological testing. A significant association was found between the DAT1 homozygous 10/10-repeat genotype and high-scoring boys (v 2 square ¼ 4.6, Po0.03; odds ratio ¼ 2.4, 95% CI 1.1-5.0). Using hierarchical linear regression, a significant independent association was found between the DAT1 10/10-repeat genotype and measures of selective attention and response inhibition after adjusting for age, IQ, and ADHD symptoms. There was no association between DAT1 and any component of working memory. Furthermore, performance on tasks of selective attention although associated with DAT1 was not associated with SWAN ADHD high scores after controlling for age and IQ. In contrast, impairment on tasks that tapped sustained attention and the central executive component of working memory were found in high-scoring boys after adjusting for age and IQ. The results suggest that DAT1 is a QTL for continuously distributed ADHD behaviours in the general population and the cognitive endophenotype of response inhibition. Molecular Psychiatry (2005) 10, 686-698.
Systematic variation of solution conditions reveals that the elastic modulus (E) of individual collagen fibrils can be varied over a range of 2-200 MPa. Nanoindentation of reconstituted bovine Achilles tendon fibrils by atomic force microscopy (AFM) under different aqueous and ethanol environments was carried out. Titration of monovalent salts up to a concentration of 1 M at pH 7 causes E to increase from 2 to 5 MPa. This stiffening effect is more pronounced at lower pH where, at pH 5, e.g., there is an approximately 7-fold increase in modulus on addition of 1 M KCl. An even larger increase in modulus, up to approximately 200 MPa, can be achieved by using increasing concentrations of ethanol. Taken together, these results indicate that there are a number of intermolecular forces between tropocollagen monomers that govern the elastic response. These include hydration forces and hydrogen bonding, ion pairs, and possibly the hydrophobic effect. Tuning of the relative strengths of these forces allows rational tuning of the elastic modulus of the fibrils.
Tracheo-innominate artery fistula (TIF) is an uncommon yet life threatening complication after a tracheostomy. Rates of 0.1-1% after surgical tracheostomy have been reported, with a peak incidence at 7-14 days post procedure. It is usually fatal unless treatment is instituted immediately. Initial case reports of TIF resulted from surgically performed tracheostomies. We present three fatalities attributable to TIF, confirmed by histopathology, after percutaneous dilatational tracheostomy (PDT). The use of PDT has resulted in tracheostomies being performed by specialists from different backgrounds and the incidence of this complication may be increasing. Pressure necrosis from high cuff pressure, mucosal trauma from malpositioned cannula tip, low tracheal incision, radiotherapy and prolonged intubation are all implicated in TIF formation. Massive haemorrhage occurring 3 days to 6 weeks after tracheostomy is a result of TIF until proven otherwise. We present a simple algorithm for management of this situation. The manoeuvres outlined will control bleeding in more than 80% of patients by a direct tamponade effect. Surgical stasis is obtained by debriding the innominate artery proximally, then transecting and closing the lumen. Neurological sequelae are few. Post-mortem diagnosis of TIF may be difficult, but specific pathology request should be made to assess innominate artery abnormalities.
Conformational orientations of a mouse monoclonal antibody to the beta unit of human chorionic gonadotrophin (anti-beta-hCG) at the hydrophilic silicon oxide/water interface were investigated using atomic force microscopy (AFM) and neutron reflectivity (NR). The surface structural characterization was conducted with the antibody concentration in solution ranging from 2 to 50 mg.L(-1) with the ionic strength kept at 20 mM and pH = 7.0. It was found that the antibody adopted a predominantly "flat-on" orientation, with the Fc and two Fab fragments lying flat on the surface. The AFM measurement revealed a thickness of 30-33 A of the layer formed in contact with 2 mg.L(-1) antibody in water, but, interestingly, the flat-on antibody molecules formed small nonuniform clusters equivalent to 2-15 antibody molecules. Parallel AFM scanning in air revealed even larger surface clusters, suggesting that surface drying induced further aggregation. The AFM study thus demonstrated that the interaction between protein and the hydrophilic surface is weak and indicated that surface aggregation can be driven by the attraction between neighboring protein molecules. NR measurements at the solid/water interface confirmed the flat-on layer orientation of adsorbed molecules over the entire concentration range studied. Thus, at 2 mg.L(-1), the adsorbed antibody layer was well represented by a uniform layer with a thickness of 40 A. This value is thicker than the 30-33 A observed from AFM, suggesting possible layer compression caused by the tip tapping. An increase in the antibody concentration to 10 mg.L(-1) led to increasing surface adsorption. The corresponding layer structure was well represented by a three-layer model consisting of an inner sublayer of 10 A, a middle sublayer of 30 A, and an outer sublayer of 25 A, with the protein volume fractions in each sublayer being 0.22, 0.42, and 0.10, respectively. The structural transition can be interpreted as a twisting and tilting of segments of the adsorbed molecules, driven by an electrostatic repulsion between them that increases with the surface packing density. Hindrance of antigen access to antibody binding sites, resulting from the change in surface packing, can account for the decrease in antigen binding capacity (AgBC) with increasing surface density of the antibody that is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.