Given a polynomial $p(z)$, a companion matrix can be thought of as a simple template for placing the coefficients of $p(z)$ in a matrix such that the characteristic polynomial is $p(z)$. The Frobenius companion and the more recently-discovered Fiedler companion matrices are examples. Both the Frobenius and Fiedler companion matrices have the maximum possible number of zero entries, and in that sense are sparse. In this paper, companion matrices are explored that are not sparse. Some constructions of non-sparse companion matrices are provided, and properties that all companion matrices must exhibit are given. For example, it is shown that every companion matrix realization is non-derogatory. Bounds on the minimum number of zeros that must appear in a companion matrix, are also given.
The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose ijth entry (for i = j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. The problem of determining minimum (symmetric) rank has been studied extensively. We define the minimum skew rank of a simple graph G to be the smallest possible rank among all skew-symmetric matrices over F whose ijth entry (for i = j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. We apply techniques from the minimum (symmetric) rank problem and from skew-symmetric matrices to obtain results about the minimum skew rank problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.