BackgroundThe human gastrointestinal tract (GIT) represents one of the most densely populated microbial ecosystems studied to date. Although this microbial consortium has been recognized to have a crucial impact on human health, its precise composition is still subject to intense investigation. Among the GIT microbiota, bifidobacteria represent an important commensal group, being among the first microbial colonizers of the gut. However, the prevalence and diversity of members of the genus Bifidobacterium in the infant intestinal microbiota has not yet been fully characterized, while some inconsistencies exist in literature regarding the abundance of this genus.Methods/Principal FindingsIn the current report, we assessed the complexity of the infant intestinal bifidobacterial population by analysis of pyrosequencing data of PCR amplicons derived from two hypervariable regions of the 16 S rRNA gene. Eleven faecal samples were collected from healthy infants of different geographical origins (Italy, Spain or Ireland), feeding type (breast milk or formula) and mode of delivery (vaginal or caesarean delivery), while in four cases, faecal samples of corresponding mothers were also analyzed.ConclusionsIn contrast to several previously published culture-independent studies, our analysis revealed a predominance of bifidobacteria in the infant gut as well as a profile of co-occurrence of bifidobacterial species in the infant’s intestine.
The results indicate that in addition to an uncharacteristic microbiota relative to that reported for healthy term infants, there was a large interindividual variation in the faecal microbiota diversity of preterm infants suggesting that the preterm microbiota is individual-specific and does not display a uniformity among infants.
Background Bacterial respiratory coinfection in the setting of SARS-CoV-2 infection remains poorly described. A description of coinfection and antimicrobial usage is needed to guide ongoing antimicrobial stewardship. Objectives To assess the rate of empirical antimicrobial treatment in COVID-19 cases, assess the rate and methods of microbiological sampling, assess the rate of bacterial respiratory coinfections and evaluate the factors associated with antimicrobial therapy in this cohort. Methods Inpatients with positive SARS-CoV-2 PCR were recruited. Antibiotic prescription, choice and duration were recorded. Taking of microbiological samples (sputum culture, blood culture, urinary antigens) and culture positivity rate was also recorded. Linear regression was performed to determine factors associated with prolonged antimicrobial administration. Results A total of 117 patients were recruited; 84 (72%) were prescribed antimicrobial therapy for lower respiratory tract infections. Respiratory pathogens were identified in seven (6%) patients. The median duration of antimicrobial therapy was 7 days. C-reactive protein level, oxygen requirement and positive cultures were associated with prolonged duration of therapy. Conclusions The rate of bacterial coinfection in SARS-CoV-2 is low. Despite this, prolonged courses of antimicrobial therapy were prescribed in our cohort. We recommend active antimicrobial stewardship in COVID-19 cases to ensure appropriate antimicrobial prescribing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.