Uses and management of black plum (Vitex doniana Sweet) in Southern Benin.
Garcinia kola (Heckel) is a versatile tree indigenous to West and Central Africa. All parts of the tree have value in traditional medicine. Natural populations of the species have declined over the years due to overexploitation. Assessment of genetic diversity and population structure of G. kola is important for its management and conservation. The present study investigates the genetic diversity and population structure of G. kola populations in Benin using ultra-high-throughput diversity array technology (DArT) single nucleotide polymorphism (SNP) markers. From the 102 accessions sampled, two were excluded from the final dataset owing to poor genotyping coverage. A total of 43,736 SNPs were reported, of which 12,585 were used for analyses after screening with quality control parameters including Minor allele frequency (� 0.05), call rate (� 80%), reproducibility (� 95%), and polymorphic information content (� 1%). Analysis revealed low genetic diversity with expected heterozygosity per population ranging from 0.196 to 0.228. Pairwise F-statistics (F ST) revealed low levels of genetic differentiation between populations while an Analysis of molecular variance (AMOVA) indicated that the majority of variation (97.86%) was within populations. Population structure analysis through clustering and discriminant analysis on principal component revealed two admixed clusters, implying little genetic structure. However, the model-based maximum likelihood in Admixture indicated only one genetic cluster. The present study indicated low genetic diversity of G. kola, and interventions are needed to be tailored towards its conservation.
Background Cassava is a staple food for over 800 million people globally providing a cheap source of carbohydrate. However, the cultivation of cassava in the country is facing to viral diseases, particularly cassava mosaic disease (CMD) which can cause up to 95% yield losses. With aim to supply farmers demand for clean planting materials, there is need to accelerate the production of the elite cultivars by use of tissue culture in order to cope with the demand.Methods Nodal explants harvested from the greenhouse grown plants were sterilised using different concentrations of a commercial bleach JIK (3.85% NaOCl) and varying time intervals. Microshoots induction was evaluated using thidiazuron (TDZ), benzyl amino purine (BAP), and kinetin. Rooting was evaluated using different auxins (Naphthalene acetic acid NAA and Indole-3-butyricacid IBA). PCR-based SSR and SCAR markers were used to verify the presence of CMD2 gene in the regenerated plantlets.Results The highest level of sterility in explants (90%) was obtained when 20% Jik was used for 15 minutes. The best cytokinin for microshoots regeneration was found to be kinetin with optimum concentrations of 5, 10 and 20 µM for Agric-rouge, Atinwewe, and Agblehoundo respectively. Medium without growth regulators was the best for rooting the three cultivars. A survival rate of 100%, 98%, and 98% was recorded in the greenhouse for Agric-rouge, Atinwewe, and Agblehoundo respectively and the plantlets appeared to be morphologically normal. The SSR and SCAR analysis of micropropagated plants showed a profile similar to that of the mother plants indicating that the regenerated plantlets retained the CMD2 gene after passing through in vitro culture, as expected with micropropagation.Conclusion The nodal explants was established to be 20% of Jik (3.85% NaOCl) with an exposure time of 15 minutes. Kinetin was proved to be the best cytokinins for microshoot formation with the optimum concentration of 5, 10 and 20µM for Agric-rouge, Atinwewe, and Agblehoundo respectively. The protocol developed during this study will be useful for mass propagation of the elite cassava cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.