Rationale:
Chronic nonhealing diabetic wound therapy and complete skin regeneration remains a critical clinical challenge. The controlled release of bioactive factors from a multifunctional hydrogel was a promising strategy to repair chronic wounds.
Methods:
Herein, for the first time, we developed an injectable, self-healing and antibacterial polypeptide-based FHE hydrogel (F127/OHA-EPL) with stimuli-responsive adipose-derived mesenchymal stem cells exosomes (AMSCs-exo) release for synergistically enhancing chronic wound healing and complete skin regeneration. The materials characterization, antibacterial activity, stimulated cellular behavior and
in vivo
full-thickness diabetic wound healing ability of the hydrogels were performed and analyzed.
Results:
The FHE hydrogel possessed multifunctional properties including fast self-healing process, shear-thinning injectable ability, efficient antibacterial activity, and long term pH-responsive bioactive exosomes release behavior.
In vitro
, the FHE@exosomes (FHE@exo) hydrogel significantly promoted the proliferation, migration and tube formation ability of human umbilical vein endothelial cells (HUVECs).
In vivo
, the FHE@exo hydrogel significantly enhanced the healing efficiency of diabetic full-thickness cutaneous wounds, characterized with enhanced wound closure rates, fast angiogenesis, re-epithelization and collagen deposition within the wound site. Moreover, the FHE@exo hydrogel displayed better healing outcomes than those of exosomes or FHE hydrogel alone, suggesting that the sustained release of exosomes and FHE hydrogel can synergistically facilitate diabetic wound healing. Skin appendages and less scar tissue also appeared in FHE@exo hydrogel treated wounds, indicating its potent ability to achieve complete skin regeneration.
Conclusion:
This work offers a new approach for repairing chronic wounds completely through a multifunctional hydrogel with controlled exosomes release.
Diabetic
wound healing and angiogenesis remain a worldwide challenge
for both clinic and research. The use of adipose stromal cell derived
exosomes delivered by bioactive dressing provides a potential strategy
for repairing diabetic wounds with less scar formation and fast healing.
In this study, we fabricated an injectable adhesive thermosensitive
multifunctional polysaccharide-based dressing (FEP) with sustained
pH-responsive exosome release for promoting angiogenesis and diabetic
wound healing. The FEP dressing possessed multifunctional properties
including efficient antibacterial activity/multidrug-resistant bacteria,
fast hemostatic ability, self-healing behavior, and tissue-adhesive
and good UV-shielding performance. FEP@exosomes (FEP@exo) can significantly
enhance the proliferation, migration, and tube formation of endothelial
cells in vitro. In vivo results
from a diabetic full-thickness cutaneous wound model showed that FEP@exo
dressing accelerated the wound healing by stimulating the angiogenesis
process of the wound tissue. The enhanced cell proliferation, granulation
tissue formation, collagen deposition, remodeling, and re-epithelialization
probably lead to the fast healing with less scar tissue formation
and skin appendage regeneration. This study showed that combining
bioactive molecules into multifunctional dressing should have great
potential in achieving satisfactory healing in diabetic and other
vascular-impaired related wounds.
Diabetic wound healing still faces great challenges due to the excessive inflammation, easy infection, and impaired angiogenesis in wound beds. The immunoregulation of macrophages polarization toward M2 phenotype that facilitates the transition from inflammation to proliferation phase has been proved to be an effective way to improve diabetic wound healing. Herein, an M2 phenotype-enabled anti-inflammatory, antioxidant, and antibacterial conductive hydrogel scaffolds (GDFE) for producing rapid angiogenesis and diabetic wound repair are reported. The GDFE scaffolds are fabricated facilely through the dynamic crosslinking between polypeptide and polydopamine and graphene oxide. The GDFE scaffolds possess thermosensitivity, self-healing behavior, injectability, broad-spectrum antibacterial activity, antioxidant and anti-inflammatory ability, and electronic conductivity. GDFE effectively activates the polarization of macrophages toward M2 phenotype and significantly promotes the proliferation of dermal fibroblasts, the migration, and in vitro angiogenesis of endothelial cells through paracrine mechanisms. The in vivo results from a full-thickness diabetic wound model demonstrate that GDFE can rapidly promote the diabetic wound repair and skin regeneration, through fast anti-inflammation and angiogenesis and M2 macrophage polarization. This study provides highly efficient strategy for treating diabetic wound repair through designing the M2 polarization-enabled anti-inflammatory, antioxidant, and antibacterial bioactive materials.
Therapeutics used to treat central nervous system (CNS) injury are designed to promote axonal regeneration and inhibit cell death. Previous studies have shown that liraglutide exerts potent neuroprotective effects after brain injury. However, little is known if liraglutide treatment has neuroprotective effects after spinal cord injury (SCI). This study explores the neuroprotective effects of liraglutide and associated underlying mechanisms. Our results showed that liraglutide could improve recovery after injury by decreasing apoptosis as well as increasing microtubulin acetylation, and autophagy. Autophagy inhibition with 3-methyladenine (3-MA) partially reversed the preservation of spinal cord tissue and decreased microtubule acetylation and polymerization. Additionally, siRNA knockdown of GLP-1R suppressed autophagy and reversed mTOR inhibition induced by liraglutide in vitro, indicating that GLP-1R regulates autophagic flux. GLP-1R knockdown ameliorated the mTOR inhibition and autophagy induction seen with liraglutide treatment in PC12 cells under H 2 O 2 stimulation. Taken together, our study demonstrated that liraglutide could reduce apoptosis, improve functional recovery, and increase microtubule acetylation via autophagy stimulation after SCI. GLP-1R was associated with both the induction of autophagy and suppression of apoptosis in neuronal cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.