Kesterite-structured quaternary semiconductor Cu2ZnSnS4 (CZTS) has been commonly used as light absorber in thin film solar cells on the basis of its optimal bandgap of 1.5 eV, high absorption coefficient, and earth-abundant elemental constituents. Herein we applied CZTS nanoparticles as a novel inorganic hole transporting material (HTM) for organo-lead halide perovskite solar cells (PSCs) for the first time, achieving a power conversion efficiency (PCE) of 12.75%, which is the highest PCE for PSCs with Cu-based inorganic HTMs reported up to now, and quite comparable to that obtained for PSCs based on commonly used organic HTM such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD). The size of CZTS nanoparticles and its incorporation condition as HTM were optimized, and the effects of CZTS HTM on the optical absorption, crystallinity, morphology of the perovskite film and the interface between the perovskite layer and the Au electrode were investigated and compared with the case of spiro-MeOTAD HTM, revealing the role of CZTS in efficient hole transporting from the perovskite layer to the top Au electrode as confirmed by the prohibited charge recombination at the perovskite/Au electrode interface. On the basis of the effectiveness of CZTS as a low-cost HTM competitive to spiro-MeOTAD in PSCs, we demonstrate the new role of CZTS in photovoltaics as a hole conductor beyond the traditional light absorber.
The electrochemical nitrogen reduction reaction (NRR), a contributor for producing ammonia under mild conditions sustainably, has recently attracted global research attention. Thus far, the design of highly efficient electrocatalysts to enhance NRR efficiency is a specific focus of the research. Among them, defect engineering of electrocatalysts is considered a significant way to improve electrocatalytic efficiency by regulating the electronic state and providing more active sites that can give electrocatalysts better physicochemical properties. Recently, metal–organic frameworks (MOFs), along with their derivatives, have captured immense interest in electrocatalytic reactions owing to not only their large surface area and high porosity but also the ability to create rich defects in their structures. Hence, they can provide plenty of exposed active sites for electron transfer, NN cleavage, and N2 adsorption to enhance NRR performance. Herein, the concept, the in situ characterizations techniques for defects, and the most common ways to create defects into MOFs have been summarized. Furthermore, the recent advances of MOF‐based electrocatalysts towards NRR have been recapitulated. Ultimately, the major challenges and outlook of defects in MOFs for NRR are proposed. This paper is anticipated to provide critical guidelines for optimizing NRR electrocatalysts.
Objective Kindlin-3 is a critical supporter of integrin function in platelets. Lack of expression of kindlin-3 protein in patients impairs integrin αIIbβ3-mediated platelet aggregation. Although kindlin-3 has been categorized as an integrin-binding partner, the functional significance of the direct interaction of kindlin-3 with integrin αIIbβ3 in platelets has not been established. Here, we evaluated the significance of the binding of kindlin-3 to integrin αIIbβ3 in platelets in supporting integrin αIIbβ3-mediated platelet functions. Approach and Results We generated a strain of kindlin-3 knock-in (K3KI) mice that express a kindlin-3 mutant that carries an integrin-interaction defective substitution. K3KI mice could survive normally and express integrin αIIbβ3 on platelets similarly to their wild type counterparts. Functional analysis revealed that K3KI mice exhibited defective platelet function, including impaired integrin αIIbβ3 activation, suppressed platelet spreading and platelet aggregation, prolonged tail bleeding time, and absence of platelet-mediated clot retraction. In addition, whole blood drawn from K3KI mice showed resistance to in vitro thrombus formation and, as a consequence, K3KI mice were protected from in vivo arterial thrombosis. Conclusions These observations demonstrate that the direct binding of kindlin-3 to integrin αIIbβ3 is involved in supporting integrin αIIbβ3 activation and integrin αIIbβ3-dependent responses of platelets and consequently contributes significantly to arterial thrombus formation
Key Points• MEKK3 regulates platelet activation through ERK1/2 and JNK2.• MEKK3 2/2 mice are protected from microthrombosis and myocardial infarct expansion post-MI.MAPKs play important roles in platelet activation. However, the molecular mechanisms by which MAPKs are regulated in platelets remain largely unknown. Real-time polymerase chain reaction and western blot data showed that MEKK3, a key MAP3K family member, was expressed in human and mouse platelets. Then, megakaryocyte/platelet-specific MEKK3-deletion (MEKK3 2/2 ) mice were developed to elucidate the platelet-related function(s) of MEKK3. We found that agonist-induced aggregation and degranulation were reduced in MEKK3 2/2 platelets in vitro. MEKK3 deficiency significantly impaired integrin aIIbb3-mediated inside-out signaling but did not affect the outside-in signaling.At the molecular level, MEKK3 deficiency led to severely impaired activation of extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun NH 2 -terminal kinase 2 but not p38 or ERK5. In vivo, MEKK3 2/2 mice showed delayed thrombus formation following FeCl 3 -induced carotid artery injury. Interestingly, the tail bleeding time was normal in MEKK3 2/2 mice. Moreover, MEKK3 2/2 mice had fewer microthrombi, reduced myocardial infarction (MI) size, and improved post-MI heart function in a mouse model of MI.These results suggest that MEKK3 plays important roles in platelet MAPK activation and may be used as a new effective target for antithrombosis and prevention of MI expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.