In 1991, Bryant and Eckard estimated the annual probability that a cartel would be detected by the US Federal authorities, conditional on being detected, to be at most between 13 % and 17 %. 15 years later, we estimated the same probability over a European sample and we found an annual probability that falls between 12.9 % and 13.3 %. We also develop a detection model to clarify this probability. Our estimate is based on detection durations, calculated from data reported for all the cartels convicted by the European Commission from 1969 to the present date, and a statistical birth and death process model describing the onset and detection of cartels.En 1991, Bryant et Eckard estiment que la probabilité annuelle de détection des cartels qui seront finalement détectés par les autorités de concurrence américaines, se situe entre 13 et 17 %. 15 ans après, nous estimons cette probabilité sur un échantillon européen, et nous trouvons que cette probabilité se situe entre 12,9 et 13,3 %. De plus, nous développons un modèle de détection des cartels nous permettant d'expliciter cette probabilité. Notre estimation est basée sur les durées de détection de tous les cartels condamnés par la Commission européenne depuis 1969, et sur un modèle statistique de processus de vie et de mort décrivant la naissance et la détection des cartels.
This article compares the level of fines actually imposed on cartel participants to the illicit gains captured by the firms and estimates a range of optimal restitution and dissuasive fines in each case. The results show that the fines imposed against cartels by the European Commission are, overall, moderate, regardless of the probability of detection. The article is based on a sample of sixty-four cartel decisions by the European Commission from 1975 to 2009 and a methodology that estimates optimal fines imposed on cartels on a case-by-case basis. /staff/connor/papers/Optimal_Deterrence.pdf. Connor concludes that on average, fines imposed upon international cartels range from 3.9% to 31.2% of the illegal profit realized by the undertakings. Other studies use case-by-case microeconomic analysis. Recent empirical studies of fines against cartels in Europe examine how fines are fixed in practice under European competition law, particularly under the 1998 Penalty Guidelines, 5 but not how they should have been determined so as to prevent the formation of cartels. 6Our article presents an empirical methodology based on easily computable microeconomic parameters, which allows us to estimate a range of optimal fines. More precisely, by analyzing sixty-four cartels condemned by the European Union over the period 1975-2009, we compare the sanction actually imposed to the illicit gain captured by the firms and estimate a range of restitution fines (amounting to the illegal profit, which corresponds to optimal fines given a 100% probability of detection) and dissuasive fines (which correspond to an optimal fine given that some cartels remain undetected). This comparative analysis allows us to assess over time the efficiency of the Commission's antitrust enforcement in preventing explicit collusion. We do not discuss comprehensively how fines are actually fixed in practice, as this article focuses on the ability of fines to deter the formation of cartels in Europe.
Nous étudions la relation d'agence entre actionnaires et dirigeant d'une entreprise lorsqu'une action illégale est possible. Nous caractérisons en particulier la rémunération optimale proposée par la firme et son implication sur les décisions prises par le dirigeant. Ceci nous amène à évaluer si l'emploi de stock-options demeure ou non optimal dans ce contexte. Nous analysons en outre l'impact de ces schémas de rémunérations en termes de politique publique de lutte contre la fraude d'entreprise et nous montrons que le levier de la détection n'est pas interchangeable avec celui des amendes. Enfin, nous mettons en évidence que les acteurs ont des préférences divergentes quant à la politique publique de détection de ces pratiques illicites
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.