De novo dermal epidermal junction morphogenesis was studied in a skin model including dermal fibroblasts and epidermal keratinocytes. Sequential gene expression, protein deposition, and localization of basement membrane zone components were studied during 15 days. The morphogenesis of dermal epidermal junction is characterized by an implementation of the different components and then a subsequent plateau phase occurring at day 11. Three groups of genes were identified depending on cellular origin and expression profile: 1/genes of fibroblastic origin (col I alpha1, col III alpha1, nidogen, and fibrillin 1); 2/genes expressed in fibroblasts and keratinocytes with symmetrical expression pattern between both cell types (col IV alpha1, col VII alpha1, and tenascin C); 3/laminin beta3 only expressed in keratinocytes. Use of modified organotypic models excluding one cell type revealed a tight interplay between fibroblasts and keratinocytes for synthesis and localization of the components of dermal epidermal junction. Keratinocytes downregulated mRNA and proteins of fibroblastic origin, upregulated col VII in fibroblasts and were absolutely required for dermal-epidermal junction localization of fibroblastic proteins. Fibroblasts downregulated mRNA of keratinocytes and were needed for extracellular secretion and correct localization of type VII collagen and laminin 5.
In skin, cohesion between the dermis and the epidermis is ensured by the dermal-epidermal junction which is also required for control of epidermal growth and differentiation. Here we showed that addition of vitamin C optimized the formation of the dermal-epidermal junction in an in vitro human reconstructed skin model leading to a structure closer to that of normal human skin. Compared with controls, vitamin C treatment led to a better organization of basal keratinocytes, an increase in fibroblast number and a faster formation of the dermal-epidermal junction. Vitamin C also accelerated deposition of several basement membrane proteins, like type IV and VII collagens, nidogen, laminin 10/11, procollagens I and III, tenascin C and fibrillin-1 at the dermal-epidermal junction. The mechanism of action of vitamin C was investigated by quantitative polymerase chain reaction in fibroblasts and keratinocytes respectively. Vitamin C effects passed in part through an increase in col I alpha1, col III alpha1 and fibrillin-1 mRNA levels. Effects on the other markers appeared to happen at the translational and/or post-translational level, as illustrated for tenascin C, col IV alpha2 and col VII alpha1 mRNA levels which were reduced by vitamin C in both cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.