Abstract. The Meteorological Synthesizing Centre-West (MSC-W) of the European Monitoring and Evaluation Programme (EMEP) has been performing model calculations in support of the Convention on Long Range Transboundary Air Pollution (CLRTAP) for more than 30 years. The EMEP MSC-W chemical transport model is still one of the key tools within European air pollution policy assessments. Traditionally, the model has covered all of Europe with a resolution of about 50 km × 50 km, and extending vertically from ground level to the tropopause (100 hPa). The model has changed extensively over the last ten years, however, with flexible processing of chemical schemes, meteorological inputs, and with nesting capability: the code is now applied on scales ranging from local (ca. 5 km grid size) to global (with 1 degree resolution). The model is used to simulate photo-oxidants and both inorganic and organic aerosols. In 2008 the EMEP model was released for the first time as public domain code, along with all required input data for model runs for one year. The second release of the EMEP MSC-W model became available in mid 2011, and a new release is targeted for summer 2012. This publication is intended to document this third release of the EMEP MSC-W model. The model formulations are given, along with details of input data-sets which are used, and a brief background on some of the choices made in the formulation is presented. The model code itself is available at www.emep.int, along with the data required to run for a full year over Europe.
Key Points• UTX regulates migration and hematopoiesis.• Female UTX-KO mice show key features of myelodysplastic syndrome with chromosomal instability.Regulated migration of hematopoietic stem cells is fundamental for hematopoiesis. The molecular mechanisms underlying stem cell trafficking are poorly defined. Based on a short hairpin RNA library and stromal cell-derived factor-1 (SDF-1) migration screening assay, we identified the histone 3 lysine 27 demethylase UTX (Kdm6a) as a novel regulator for hematopoietic cell migration. Using hematopoietic stem and progenitor cells from our conditional UTX knockout (KO) mice, we were able to confirm the regulatory function of UTX on cell migration. Moreover, adult female conditional UTX KO mice displayed myelodysplasia and splenic erythropoiesis, whereas UTX KO males showed no phenotype. During development, all UTX KO female and a portion of UTX KO male embryos developed a cardiac defect, cranioschisis, and died in utero. Therefore, UTY, the male homolog of UTX, can compensate for UTX in adults and partially during development. Additionally, we found that UTX knockdown in zebrafish significantly impairs SDF-1/CXCR4-dependent migration of primordial germ cells. Our data suggest that UTX is a critical regulator for stem cell migration and hematopoiesis. (Blood. 2013;121(13):2462-2473
For anthracycline-based chemotherapy to be immunogenic, dying cancer cells must release annexin A1 (ANXA1) that subsequently interacts with the pattern recognition receptor, formyl peptide receptor 1 (FPR1), on the surface of dendritic cells (DC). Approximately 30% of individuals bear loss-of-function alleles of FPR1 , calling for strategies to ameliorate their anticancer immune response. Here, we show that immunotherapy with a ligand of Toll-like receptor-3, polyinosinic:polycytidylic acid (pIC), restores the defi cient response to chemotherapy of tumors lacking ANXA1 developing in immunocompetent mice or those of normal cancers growing in FPR1-defi cient mice. This effect was accompanied by improved DC-and T-lymphocyte-mediated anticancer immunity. Of note, carcinogen-induced breast cancers precociously developed in FPR1-defi cient mice as compared with wild-type controls. A similar tendency for earlier cancer development was found in patients carrying the loss-of-function allele of FPR1 . These fi ndings have potential implications for the clinical management of FPR1-defi cient patients. SIGNIFICANCE:The loss-of-function variant rs867228 in FPR1 , harbored by approximately 30% of the world population, is associated with the precocious manifestation of breast, colorectal, esophageal, and head and neck carcinomas. pIC restores defi cient chemotherapeutic responses in mice lacking Fpr1 , suggesting a personalized strategy for compensating for the FPR1 defect.
The Meteorological Synthesizing Centre-West (MSC-W) of the European Monitoring and Evaluation Programme (EMEP) has been performing model calculations in support of the Convention on Long Range Transboundary Air Pollution (CLRTAP) for more than 30 yr. The EMEP MSC-W chemical transport model is still one of the key tools within European air pollution policy assessments.
Traditionally, the EMEP model has covered all of Europe with a resolution of about 50 × 50 km2, and extending vertically from ground level to the tropopause (100 hPa). The model has undergone substantial development in recent years, and is now applied on scales ranging from local (ca. 5 km grid size) to global (with 1 degree resolution). The model is used to simulate photo-oxidants and both inorganic and organic aerosols.
In 2008 the EMEP model was released for the first time as public domain code, along with all required input data for model runs for one year. Since then, many changes have been made to the model physics, and input data. The second release of the EMEP MSC-W model became available in mid 2011, and a new release is targeted for early 2012. This publication is intended to document this third release of the EMEP MSC-W model. The model formulations are given, along with details of input data-sets which are used, and brief background on some of the choices made in the formulation are presented. The model code itself is available at www.emep.int, along with the data required to run for a full year over Europe
Absolute reaction rate studies of NO3 radicals with 4 aldehydes were performed in the atmosphere simulation chamber SAPHIR at the Research Center Jülich. Rate coefficients (ethanal: 2.6 ± 0.5, propanal: 5.8 ± 1.0, butanal: 11.9 ± 1.4, benzaldehyde: 2.2 ± 0.6; in 10−15 cm3 s−1 at 300 K) were determined from measured concentration–time profiles of aldehydes and NO3 at near ambient conditions. The values for the aliphatic aldehydes are in good agreement with the most recent recommendations (IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry: Evaluated kinetic and photochemical data for atmospheric chemistry, 2005, available at http://www.iupac-kinetic.ch.cam.ac.uk). The measured concentration‐time profiles of precursor aldehydes, NO3, NO2, and of product aldehydes were compared to model calculations based on the MCM v3 (Jenkin et al., 2003; Saunders et al., 2003). Differences between measurements and model are attributed to a major interference of the GC system to peroxyacyl nitrates. In addition modifications to the rate constants in the MCM are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.