Abstract. The atmosphere simulation chamber SAPHIR at the Research Centre Jülich was used to test the suitability of state-of-the-art analytical instruments for the measurement of gas-phase formaldehyde (HCHO) in air. Five analyzers based on four different sensing principles were deployed: a differential optical absorption spectrometer (DOAS), cartridges for 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by off-line high pressure liquid chromatography (HPLC) analysis, two different types of commercially available wet chemical sensors based on Hantzsch fluorimetry, and a proton-transfer-reaction mass spectrometer (PTR-MS). A new optimized mode of operation was used for the PTR-MS instrument which significantly enhanced its performance for online HCHO detection at low absolute humidities.The instruments were challenged with typical ambient levels of HCHO ranging from zero to several ppb. Synthetic air of high purity and particulate-filtered ambient air were used as sample matrices in the atmosphere simulation chamber onto which HCHO was spiked under varying levels of humidity and ozone. Measurements were compared to mixing ratios calculated from the chamber volume and the known amount of HCHO injected into the chamber; measurements were also compared between the different instruments. The formal and blind intercomparison exercise was conducted Correspondence to: T. Brauers (th.brauers@fz-juelich.de) under the control of an independent referee. A number of analytical problems associated with the experimental set-up and with individual instruments were identified, the overall agreement between the methods was fair.
[1] This paper presents results from the first large-scale in situ intercomparison of oxygenated volatile organic compound (OVOC) measurements. The intercomparison was conducted blind at the large (270 m 3 ) simulation chamber, Simulation of Atmospheric Photochemistry in a Large Reaction Chamber (SAPHIR), in Jülich, Germany. Fifteen analytical instruments, representing a wide range of techniques, were challenged with measuring atmospherically relevant OVOC species and toluene (14 species, C 1 to C 7 ) in the approximate range of 0.5-10 ppbv under three different conditions: (1) OVOCs with no humidity or ozone, (2) OVOCs with humidity added (r.h. % 50%), and (3) OVOCs with ozone (%60 ppbv) and humidity (r.h. % 50%). The SAPHIR chamber proved to be an excellent facility for conducting this experiment. Measurements from individual instruments were compared to mixing ratios calculated from the chamber volume and the known amount of OVOC injected into the chamber. Benzaldehyde and 1-butanol, compounds with the lowest vapor pressure of those studied, presented the most overall difficulty because of a less than quantitative transfer through some of the participants' analytical systems. The performance of each individual instrument is evaluated with respect to reference values in terms of time series and correlation plots for each compound under the three measurement conditions. A few of the instruments performed very well, closely matching the reference values, and all techniques demonstrated the potential for quantitative OVOC measurements. However, this study showed that nonzero offsets are present for specific compounds in a number of instruments and overall improvements are necessary for the majority of the techniques evaluated here.Citation: Apel, E. C., et al. (2008), Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber,
Absolute reaction rate studies of NO3 radicals with 4 aldehydes were performed in the atmosphere simulation chamber SAPHIR at the Research Center Jülich. Rate coefficients (ethanal: 2.6 ± 0.5, propanal: 5.8 ± 1.0, butanal: 11.9 ± 1.4, benzaldehyde: 2.2 ± 0.6; in 10−15 cm3 s−1 at 300 K) were determined from measured concentration–time profiles of aldehydes and NO3 at near ambient conditions. The values for the aliphatic aldehydes are in good agreement with the most recent recommendations (IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry: Evaluated kinetic and photochemical data for atmospheric chemistry, 2005, available at http://www.iupac-kinetic.ch.cam.ac.uk). The measured concentration‐time profiles of precursor aldehydes, NO3, NO2, and of product aldehydes were compared to model calculations based on the MCM v3 (Jenkin et al., 2003; Saunders et al., 2003). Differences between measurements and model are attributed to a major interference of the GC system to peroxyacyl nitrates. In addition modifications to the rate constants in the MCM are suggested.
Abstract.The results from a simulation chamber study on the formaldehyde (HCHO) absorption cross section in the UV spectral region are presented. We performed 4 experiments at ambient HCHO concentrations with simultaneous measurements of two DOAS instruments in the atmosphere simulation chamber SAPHIR in Jülich. The two instruments differ in their spectral resolution, one working at 0.2 nm (broad-band, BB-DOAS), the other at 2.7 pm (high-resolution, HR-DOAS). Both instruments use dedicated multi reflection cells to achieve long light path lengths of 960 m and 2240 m, respectively, inside the chamber. During two experiments HCHO was injected into the clean chamber by thermolysis of well defined amounts of paraformaldehyde reaching mixing rations of 30 ppbV at maximum. The HCHO concentration calculated from the injection and the chamber volume agrees with the BB-DOAS measured value when the absorption cross section of Meller and Moortgat (2000) and the temperature coefficient of Cantrell (1990) were used for data evaluation. In two further experiments we produced HCHO in-situ from the ozone + ethene reaction which was intended to provide an independent way of HCHO calibration through the measurements of ozone and ethene. However, we found an unexpected deviation from the current understanding of the ozone + ethene reaction when CO was added to suppress possible oxidation of ethene by OH radicals. The reaction of the Criegee intermediate with CO could be 240 times slower than currently assumed. Based on the BB-DOAS measurements we could deduce a high-resolution cross section for HCHO which was not measured directly so far.
The atmosphere simulation chamber SAPHIR at the Research Centre Jülich was used to test the suitability of state-of-the-art analytical instruments for the measurement of gas-phase formaldehyde (HCHO) in air. Five analyzers based on four different sensing principles were deployed: a differential optical absorption spectrometer (DOAS), car-5 tridges for 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by off-line high pressure liquid chromatography (HPLC) analysis, two different types of commercially available wet chemical sensors based on Hantzsch fluorimetry, and a proton-transferreaction mass spectrometer (PTR-MS). A new optimized mode of operation was used for the PTR-MS instrument which significantly enhanced its performance for on-line 10 HCHO detection at low absolute humidities.The instruments were challenged with typical ambient levels of HCHO ranging from zero to several ppb. Synthetic air of high purity and particulate-filtered ambient air were used as sample matrices in the atmosphere simulation chamber onto which HCHO was spiked under varying levels of humidity and ozone. Measurements were compared to 15 mixing ratios calculated from the chamber volume and the known amount of HCHO injected into the chamber; measurements were also compared between the different instruments. The formal and blind intercomparison exercise was conducted under the control of an independent referee. A number of analytical problems associated with the experimental set-up and with individual instruments were identified, the overall agree-20 ment between the methods was good. Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion EGU Fig. 3. Time series of measured and calculated HCHO mixing ratios and chamber conditions during the zero air experiment with humidity. Upper panel: Original measurements of the individual instruments at their original time resolution. The calculated values are at 1 min timestep. Middle panel: Measurements ratioed to HCHO calc in log-scale. Lower panel: Ozone mixing ratio (left axis) and temperatures (right axis) outside the chamber, inside the chamber, and dewpoint temperatures inside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.